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Abstract

This paper considers ordered vector spaces with arbitrary closed cones and establishes a num-
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culus for the Henstock-Kurzweil integral, we generalize existing results on increasing differences
and supermodularity for C1 or C2 functions. None of the results are based on the assumption
that the order is Euclidean. As applications we consider a teamwork game and a monopoly union
model.
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1 Introduction

There is a large literature on monotone comparative statics and such assump-
tions on parameterized objective functions as supermodularity and increasing
differences are quickly becoming standard. The strength of these assumptions
is their intuitive appeal and, of course, the method of which they are a part.
Their weakness is that they are not always easy to check in concrete applica-
tions. As a matter of fact, the only really powerful tools toward this end are
the results of Topkis (1978) concerning C1- or C2-smooth functions defined on
R

N with the Euclidean product order. But how does one check these assump-
tions if the order is not Euclidean or the function is not sufficiently smooth ?
This and related questions have motivated this paper.

Specifically, the paper considers finite dimensional ordered vector spaces
and establishes characterization results similar to Topkis’, but more general in
two respects: they relax the smoothness conditions and they hold for arbitrary
closed vector orders.1

The generalization to arbitrary vector orders is useful whenever an objec-
tive function’s domain is not a lattice/sublattice with respect to the Euclidean
order. An example is the first application in section 5 which considers a team-
work game where the team’s members have multiple tasks. The agents’ choice
sets are not Euclidean sublattices. But using results from section 2, a complete
characterization of those orders for which they are, is obtained. Conditions for
increasing differences and supermodularity can then be established.2

The generalization to non-smooth functions of Topkis’ results turns out
to be particularly easy to apply for two classes of functions: One is nearly
everywhere differentiable functions, i.e., functions which are differentiable at
all except, perhaps, at most a countable number of points. The other class
consists of those functions which are Lipschitz continuous and therefore admit
a generalized derivative in the sense of Clarke (1983). A typical application
within the first class is in situations where Inada-type boundary conditions are
imposed on objective functions (see section 3.2). The second application in
section 5 (a monopoly union model) illustrates the results on functions with
generalized derivatives. The paper also contains a much more general result
which applies to functions which are Henstock-Kurzweil integrable (theorem

1A closed vector order is a vector order whose positive cone is closed. See section 2 for
mathematical preliminaries.

2Of course the motivation for this whole exercise would be to establish existence of a pure
strategy Nash equilibrium via Tarski’s fixed point theorem or to study comparative statics.
In this paper, no attention is given to these issues (see Topkis (1998) for a comprehensive
treatment).
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4). The weakness of this result is that its generality makes it difficult to apply.3

On the other hand, the introduction of the Henstock-Kurzweil integral plays
a key role in the proofs of several other results and may be of some interest in
itself.

The structure of the paper is as follows: Section 2 contains results on vector
orders and vector lattices. Section 3 contains results on increasing differences.
It begins with some notation and an overview and then splits into three sub-
sections each of which can be read independently of the others. The first
contains theorem 4 mentioned above, as well as the necessary prerequisites on
Henstock-Kurzweil integration. The second looks at nearly everywhere differ-
entiable functions. The third concerns functions which are locally Lipschitz
(which is the assumption underlying Clarke calculus, see Clarke (1983)). Sec-
tion 4 has but one purpose: To establish results for supermodularity which
parallel those on increasing differences. The reader may jump directly to the-
orem 8 in this section, although the section does contain some other results
which specialists in the field may find interesting. Finally, section 5 contains
the two applications.

2 Vector Orders and Vector Lattices

Let X = (RN ,�X) and T = (RM ,�T ) be ordered vector spaces with positive
cones X+ ⊂ R

N and T+ ⊂ R
M .4 A function f : X → T is order-preserving if

f(x′) �T f(x) whenever x′ �X x. In the literature order-preserving functions
are also called isotone, monotone, and increasing. A real-valued function de-
fined on the product of X and T , f : X × T → R has increasing differences
in (x, t) on X × T if for all t′ �T t, the function f(·, t′) − f(·, t) : X → (R,≥)
is order-preserving. The set of order-preserving functions forms a convex cone

3The route to any characterization result for non-smooth functions is in principle straight-
forward: Use the fundamental theorem of calculus in one of its forms to recover the function
from “what exists of its derivative”. This leads to a statement such as our theorem 4,
which, to be sure, does establish both necessary and sufficient conditions for a non-smooth
function to have increasing differences. The problem is that any such result just lead to
a new question which is often more difficult to answer: How does one actually check that
the resulting conditions ? It is this second question which we are able to give a satisfactory
answer to for nearly everywhere differentiable and Lipschitz continuous functions.

4The positive cone of X , say, is the set X+ = {x ∈ R
N : x �X 0}. That �X is a (partial)

vector order implies that X+ is a proper cone, i.e., a convex pointed cone (a cone is pointed
if −x, x ∈ X+ ⇒ x = 0). Conversely let X+ ⊂ R

N be any proper cone. Then X+ defines a
vector order in R

N by virtue of ”x �X y ⇔ x − y ∈ X+”. Thus in a vector space there is a
one-to-one correspondence between the proper cones and the set of vector orders.
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in the vector space, T X , of all mappings from X to T . It is furthermore a
pointwise closed cone provided that T+ is (norm) closed in T :

Lemma 1 Let (fn)∞n=1, fn : X → T , be a sequence of order-preserving func-
tions which converges pointwise to a function f : X → T . If T+ is closed
and fn is order-preserving for every n ∈ N, then the pointwise limit f is
order-preserving.

Proof: The result is immediate in light of the fact that fn(y) �T fn(x) ⇔
fn(y) − fn(x) ∈ T+ since a pointwise convergent sequence must have its limit
point in T+ when T+ is closed. �

Remark 2.1 In the previous lemma it is sufficient that X be an ordered set.

A partially ordered set is directed if every two-element subset has an upper
bound. For general vector spaces, X+ directs X if and only if every x ∈ X
can be written x = y − z where y, z ∈ X+ (i.e., X+ is generating, cf. Schaefer
(1999), chapter 15.1). When X is finite dimensional, it is directed under
a vector order if and only if the positive cone of the order has non-empty
interior (Birkhoff (1967), chapter 15, theorem 8). A partially ordered set
is conditionally complete if every subset which has an upper bound has a
supremum. A vector lattice is an ordered vector space in which every two
element subset has a supremum.5 It follows that a conditionally complete
ordered vector space is a vector lattice if and only if it is directed. The next
result, whose proof can be pieced together from results in Birkhoff (1967),
chapter 15, shows when a vector lattice is conditionally complete.

Lemma 2 If X is a vector lattice then it is conditionally complete if and only
if the positive cone X+ is closed.

Let (p1, . . . , pP ), P ∈ N, be an finite sequence of vectors in X. The
conic hull of such a sequence of vectors defines a closed, convex cone: X+ =
cone(p1, . . . , pP ) ≡ {x ∈ X : x =

∑P
i=1 λipi, λi ≥ 0, i = 1, . . . , P }. Arrang-

ing the vectors in a matrix Q = [p1, . . . , pP ] ∈ R
N×P we say that Q gener-

ates the cone X+, or that X+ has matrix representation Q, and write simply
X+ = cone(Q).

For example let X = R
2 and Q an arbitrary full rank 2 by 2 matrix. Then

Q generates a convex cone in X, X+ = cone(Q), which is closed and directs

5Equivalently, that every two-element subset has an infimum, see Schaefer (1999), pp.
209.
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R
2. In two dimensions, it is clear that all directing cones must be of this form,

and it is straight-forward to see that they turn R
2 into a vector lattice (which,

in fact, must be conditionally complete by lemma 2).
The observations in the previous paragraph remain valid also in higher di-

mensions. This is surprising because in three or more dimensions, a convex
cone need not be a polyhedron and so it may not have a matrix representation.
The result is an immediate consequence of the so-called Choquet-Kendall theo-
rem. The Choquet-Kendall theorem says, when X = R

N and X+ is closed and
generating, that X will be a vector lattice if and only if it has a basis B which
is a simplex of full dimension N − 1 (see e.g. Peressini (1967), proposition
3.11.).6

Theorem 1 Assume that X+ is closed. Then (RN ,�X) is a vector lattice
if and only if X+ has a full rank N by N matrix representation Q.

Proof: “⇒”: Since X+ is closed, the vector lattice must be conditionally
complete by lemma 2. So X+ directs X or equivalently, it is generating. The
statement now follows from the Croquet-Kendall theorem by taking as Q’s
column vectors the vertices of the simplex which is a basis for X+. “⇐”: A
cone with a full rank matrix representation is of course both closed and gen-
erating, so again the conclusion follows from the Croquet-Kendall theorem. �

In many applications, the choice set is not a vector lattice but an
interval I = {x ∈ R

N : y ≤ x ≤ y}, where yn = −∞ and ym = +∞ are
allowed for some or all coordinates. For example smooth supermodular games
as defined in Milgrom and Roberts (1990) have joint strategy sets which are
compact intervals. While theorem 1 provides conditions under which (RN ,�X)
is a vector lattice, the following result further restricts the matrix representa-
tion such that such intervals become sublattices. While everything said so far
has been standard, this result is new.

Theorem 2 Assume that (RN ,�X) is a vector lattice with matrix represen-
tation Q ∈ R

N×N and let I be an interval as defined above. Then I will be
a sublattice of (RN ,�X) if and only if Q has at most two non-zero entries in
every row and the product of any two such non-zero row entries is non-positive.

Proof: Denote the inverse of the matrix representation by Q−1 (such an
inverse exists since Q has full rank by theorem 1). The class of linear bi-
jections Q : R

N → R
N , is the unique class that maps a conditionally com-

plete vector lattice, lattice isomorphically into a Euclidean lattice. Using this

6A subset B ⊆ X is a basis for the cone X+ ⊆ X if every x ∈ X+\{0} has a unique
representation of the form x = λb, λ > 0, b ∈ B.
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it is straight-forward to show that a subset S ⊆ R
N will be a sublattice of

X if and only if Q−1(S) = {y ∈ R
N : y = Q−1x, x ∈ S} is a sublattice

of (RN ,≥N) (a Euclidean sublattice).7 Let S be an interval and consider
Q−1(S) = {y ∈ R

2 : y ≥N Qy ≥N y} (if the interval is open, simply delete
the corresponding inequality) which is seen to be a set of solutions to a sys-
tem of linear inequalities, i.e., a polyhedron. Conveniently, a polyhedron in
R

N is a Euclidean sublattice if and only if it is the solution set of a finite
number of linear bimonotone inequalities (Veinott (1989)). A linear inequality
(d1, . . . , dN) · (x1, . . . , xN)T ≥ 0 is bimonotone if d = (d1, . . . , dN) has at most
two non-zero entries, say di and dj, and the product of these is non-positive,
didj ≤ 0. This implies the conclusion of the theorem. �

The idea in the proof of theorem 2 works more generally and in section 5.1
an example is provided where the choice set is not an interval.

3 Increasing Differences

From the definition of increasing differences (section 2) it is seen that when T
is an ordered vector space with positive cone T+, f : X × T → R will have
increasing differences if and only if,

(1)
f(x, t + hd) − f(x, t)

h

is order-preserving in x for all h > 0, d ∈ T+, and t ∈ T . If for some direction
in the positive cone d ∈ T+,

(2) f+
t,d(x) := lim

h↓0
f(x, t + hd) − f(x, t)

h

exists and T+ is closed, then this (one-sided) directional derivative must con-
sequently be order-preserving in x by lemma 1 (and at the level of generality

7Let f : R
N → R and X = (RN ,�X) a partially ordered set. Consider a bijective

mapping h : R
N → R

N . If f(h−1(y)) is twice differentiable in y with non-negative off-
diagonal elements, we cannot conclude that f is supermodular in x = h−1(y) in some
appropriate order �X , unless h is of the form h(x) = Qx (in which case we also know �X).
This points to a serious pitfall when considering transformations: Increasing differences only
implies supermodularity on a vector lattice (perhaps as model of a collection of chains), and
- unless h is a linear bijection - X will not be a vector lattice in any order corresponding to
a transformation. One should therefore make a clear separation between lattice isomorphic
transformations and transformations of variables more generally.
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marked by remark 2.1). If in (2), one can replaced h ↓ 0 by h → 0 to obtain
the usual two-sided directional derivative, which throughout this paper is de-
noted f ′

t,d(x), this map must consequently also be order-preserving in x. If f is
(Gâteaux) differentiable at the point (x, t), f ′

t,d(x) = f+
t,d(x) = dT Dtf(x, t)

for all d ∈ T+ where Dtf(x, t) is the derivative.8 Thus, if f is differen-
tiable at (x, t) and has increasing differences, then - whenever it is defined
- the evaluation dtDtf(x, t) must be order-preserving in x for all d ∈ T+, i.e.,
dTDtf(·, t) : X → (R,≥) must be order-preserving. Consider now T+’s matrix
representation P = [p1, . . . , pP ] ∈ R

M×P . The requirement that dT Dtf(x, t)
must be order-preserving in x for every direction d ∈ T+ now translates into the
very simple statement that PT Dtf(·, t) : X → (RP ,≥P ) is an order-preserving
mapping. If, in fact, Dtf(x, t) exists everywhere (f is everywhere differen-
tiable) then this is the same as saying that PT [Dtf(x′, t)−Dtf(x, t)] ≥P 0 for
all x′ �X x.

To sum up, whenever a function has one- or two-sided derivatives at a
point, these must be order-preserving in x. This requirement is, however, not
sufficient in general. To find sufficient conditions we must turn the previ-
ous argument around and recover the function f from its derivative (suitably
generalized when f is not sufficiently smooth).

3.1 Increasing Differences with ACG Functions

The main result of this subsection (theorem 4) provides a result which charac-
terizes increasing differences for a very general class of functions known as
ACG (which is short for generalized absolutely continuous in the restrict-
ed sense). In the following two subsections several results will be presented
which are either special cases or immediate consequences. Since the general-
ity of theorem 4 will not be used outside the proofs, the non-mathematically
minded reader may wish to skip this subsection entirely in a first reading.

Recall that f : [a, b] → R is absolutely continuous, if for every ε > 0 there
exists a δ > 0 such that

∑I
i=1 ai − bi < δ ⇒ ∑I

i=1 |f(ai) − f(bi)| < ε for any
finite sequence of disjoint open intervals ]ai, bi[⊂ [a, b], i = 1, . . . , I. If under
the same conditions one demands that:

∑I
i=1 supu,v∈[ai,bi] |f(u) − f(v)| < ε,

f is ACG∗ (absolutely continuous in the restricted sense). Finally, f is ACG
(generalized absolutely continuous in the restricted sense), if it is continuous
and [a, b] is equal to a countable union of subintervals upon each of which f is

8Dtf(x, t) and the continuous linear mapping it defines: d : Dtf(x, t) �→ dT Dtf(x, t) are
both referred to here as the derivative of f at (x, t). Although this terminology is abusive
we shall extend its usage to include matrices which are identified both as a collection of
numbers and as linear mappings.
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ACG∗ (cf. Talvila (2001)). Any absolutely continuous function is ACG. Since
any Lipschitz continuous function is absolutely continuous, and any concave
(or convex) function is Lipschitz on the interior of its domain, the class of
ACG function is very broad and accommodates in particular the non-smooth
function classes studied by Clarke (1983) as we will be using in section 3.1.
The class of ACG functions supplies what to the best of the author’s knowl-
edge, is the literature’s most general formulation of the fundamental theorem
of calculus. Before presenting that result we need to introduce the Henstock-
Kurzweil integral. Let I = [a, b] ⊂ R be a compact interval. A tagged partition
of I, T = ([xi−1, xi], ti)

n
i=1 is a finite set of order pairs such that the intervals

Ii = [xi−1, xi], i = 1, . . . , n forms a (disjoint) partition of I and ti ∈ Ii for all
i. The Riemann sum of a function f : I → R under the tagged partition T is
S(f, T ) =

∑n
i=1 f(ti)(xi−xi−1). For any strictly positive function δ : I → R++,

a tagged partition is said to be δ-fine if 0 < xi − xi−1 ≤ δ(ti) for all i.

Definition (Henstock-Kurzweil Integral) Let I = [a, b] be an interval
and f : I → R a function. f is said to be Henstock-Kurzweil integrable on I
with Henstock-Kurzweil integral

∫ b

a
f(x) ∈ R, if for every ε > 0 there exists a

function δε : I → R++ such that,

(3) |S(f, T ) −
∫ b

a

f(x)| ≤ ε

for any tagged partition of I which is δε-fine.

The simplicity of this definition compared to that of the Lebesgue inte-
gral is considerable.9 Nonetheless, the Henstock-Kurzweil integral is actually
more general than the Lebesgue integral (see remark 3.1 below). We are now
ready to state the fundamental theorem of calculus (for the proof see Gordon
(1994)).

Theorem 3 (Fundamental Theorem of Calculus for the Henstock-
Kurzweil integral) A function f : [a, b] → R is ACG if and only if it is dif-
ferentiable almost everywhere and there exists a Henstock-Kurzweil integrable
function g : [a, b] → R with f ′(x) = g(x), a.e., such that f(x) = f(a)+

∫ x

a
g(s)

for all x ∈ [a, b].

9Observe that if we replace the function δ : I → R++ in the definition with a constant
δ > 0 we get the Riemann integral. This is why the Henstock-Kurzweil integral is sometimes
also called the generalized Riemann integral.
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Remark 3.1 The fundamental theorem of calculus for the Lebesgue-integral
is a special case of theorem 3 since a function f : [a, b] → R is Lebesgue
integrable if and only if both f and |f | are Henstock-Kurzweil integrable (cf.
Bartle (1996)).

For the next result, we recall from above that f ′
t,d(x) denotes the usual (two-

sided) directional derivative of f taken with respect to t in the direction d ∈ T .

Theorem 4 Assume that for all (x, t) ∈ X × T and d ∈ T+, f(x, t + hd) is
ACG in h. Then f : X × T → R has increasing differences in (x, t) if and
only if for all d ∈ T+ and t ∈ T : f ′

t,d(y) − f ′
t,d(x) ≥ 0 whenever y �X x and

both f ′
t,d(y) and f ′

t,d(x) exist.

Proof: ”⇒”: Proved at the beginning of section 3. ”⇐” Let fx,t,d(h) :=
f(x, t + hd) and when this function is differentiable denote the derivative
f ′

x,t,d(h). Note that f ′
t,d(x) = f ′

x,t,d(0) in terms of the notation in the main
body of the paper. f will have increasing differences if and only if:

(4)
fx,t,d(h) − fx,t,d(0)

h

is order-preserving in x for all (h, d, t) ∈ R++ × T+ × T . Fix (h, d, t) ∈
R++ × T+ × T and x ∈ X. By assumption fx,t,d(s) is ACG in s, in particular
it is ACG in s on [0, h]. Hence by the fundamental theorem of calculus for the
Henstock-Kurzweil integral there exists a (Henstock-Kurzweil) integrable func-
tion gx,t,d : [0, h] → R such that f ′

x,t,d(s) = gx,t,d(s) for almost every s ∈ [0, h],

and fx,t,d(h) − fx,t,d(0) =
∫ h

0
gx,t,d(s). Since the previous argument is valid for

arbitrary x ∈ X and since the Henstock-Kurzweil integral is a linear operator,
it follows that (4) will be order-preserving in x if and only if:

(5)

∫ h

0
(gy,t,d(s) − gx,t,d(s))

h
≥ 0

whenever y �x x. By assumption f ′
t+sd,d(y) − f ′

t+sd,d(x) ≥ 0 whenever these
terms are well-defined. Equivalently f ′

y,t,d(s) − f ′
x,t,d(s) ≥ 0 (the chain rule),

which consequently holds for almost every s ∈ [0, h] since an ACG function is
differentiable almost everywhere. But then gy,t,d(s) − gx,t,d(s) ≥ 0 for almost
every s ∈ [0, h] which implies (5) . Since h > 0, d ∈ T+, and t ∈ T were picked
arbitrarily, this finishes the proof. �

Theorem 4 provides a general approach to characterizing increasing differ-
ences for non-smooth functions: Directionally ACG functions are differentiable
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almost everywhere in any given direction. Any sound notion of a generalized
derivative for directionally ACG functions will consequently be single-valued
almost everywhere, and by theorem 4 it is only at the differentiability points
we need to check that the derivative is order preserving. This observation will
be used to characterize increasing differences in the next two subsections.

3.2 The Nearly Everywhere Differentiable Case

A function is said to be differentiable nearly everywhere if it is differentiable
in all except, perhaps, an at most countable number of points. Note that
this statement makes no demand on part of the derivative such as continu-
ity, boundedness, or agreement almost everywhere with a Lebesgue integrable
function. On the other hand it is clearly a more restrictive assumption than
differentiability almost everywhere with respect to the Lebesgue measure.

Our first characterization result is a direct generalization of the results
concerning C1 and C2 functions on product spaces with the Euclidean order
mentioned in the introduction (these results are normally attributed to Topkis
(1978)).10

Theorem 5 Let X = (RN ,�X) and T = (RM ,�T ) be ordered vector spaces
with closed positive cones generated by the matrices Q ∈ R

N×Q and P ∈ R
M×P .

1. Assume that for all x ∈ X, f : X × T → R is continuous and differen-
tiable in t nearly everywhere. Then f : X × T → R will have increasing
differences in (x, t) on X×T if and only if PT [Dtf(x′, t)−Dtf(x, t)] ≥P 0
whenever x′ − x ∈ cone(Q) and the concerned derivatives exist.

2. Assume that f is continuously differentiable and has well-defined second
order cross-derivatives D2

txf(x, t) nearly everywhere, i.e., for all (x, t) ∈
X × T except for an at most countable number of points. Then f has
increasing differences in (x, t) on X×T if and only if the P by Q matrix,

PT D2
txf(x, t)Q

is non-negative for all (x, t) ∈ {(x, t) ∈ X × T : D2
txf(x, t) exists}.

10Topkis (1978) actually announces the results under the assumption that the function
is merely differentiable (respectively, twice differentiable). Milgrom and Shannon (1994)
refer to Topkis (ibid.) for the second-order result under the assumption of C2-smoothness
(theorem 6). Ironically, the results are in fact valid as stated by Topkis (1978) since a
differentiable (not necessarily C1!) function is nearly everywhere differentiable. If, in fact,
Topkis (1978) refers to results which are part of the folklore, the results presented here
obviously cannot claim originality in the everywhere differentiable case.
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Proof: Define fx,t,d(h) = f(x, t + hd), fx,t,d : R → R, and note that since f is
differentiable nearly everywhere in t, fx,t,d is differentiable nearly everywhere
in h for all d ∈ T+. Therefore fx,t,d is generalized absolutely continuous in
the restricted sense (cf. section 3.1), hence there exists a Henstock-Kurzweil
integrable function gx,t,d : R → R, such that f ′

x,t,d(h) = gx,t,d(h) for almost
every h ∈ [a, b], all a, b ∈ R. The result now follows from theorem 4 below
since P’s column vectors generate T+ and the derivative is a linear mapping.
The second part of theorem 5 is, of course, just the second order formulation
that arises from changing the basis according to P and Q. Indeed, it is clear
from the definition that if f is twice cross-differentiable at (x, t), then it will
have increasing differences locally at that point if and only if,

(6)
(f(x + h̃d̃, t + hd) − f(x + h̃d̃, t)) − (f(x, t + hd) − f(x, t))

hh̃
≥ 0

for all h > 0, h̃ > 0, d̃ ∈ X+, d ∈ T+, and (x, t) ∈ X × T . If for some
(x, t) ∈ X × T , the limit exists as h, h̃ → 0 the resulting second order di-
rectional derivative, f ′′

d,d̃
(x, t) must consequently be non-negative. Again, the

existence of a second order derivative, D2
txf(x, t), adds sufficient structure for

the situation to become a simple one for then f ′′
d,d̃

(x, t) = dT D2
txf(x, t)d̃, for all

(d̃, d) ∈ X+ × T+. Hence the statement of the theorem.11 �

Topkis’ results concerning increasing differences for C1 and C2 functions
are clearly special cases of theorem 5. Indeed, if we take P = IM and Q = IN

(the identity matrices) then T+ = cone(IM) = R
M
+ and X+ = cone(IN) =

R
N
+ . Since R

M
+ and R

N
+ are the positive cones of the Euclidean orders, and

PTD2
txf(x, t)Q = D2

txf(x, t) in this case, Topkis’ result arrives under weakened
smoothness assumptions.

A straight-forward application of theorem 5 is to objectives which satisfy
boundary conditions. In many situations (Cournot oligopoly, the Bertrand
model, market games, etc.), agents are assumed to have choice set R+ or
[0, y] ⊂ R+. Often one wishes to rule out trivial equilibria and does this
by imposing boundary conditions of Inada type (the first derivate approaches
infinity as x → 0 in the choice set). Obviously, a function satisfying such a
boundary condition is not C1 and so Topkis’ characterization results do not
apply. But theorem 5 does. For example take f : R+ × R+ → R; f(x, t) = xt.

11A second order derivative is generally an operator-norm continuous bilinear mapping.
As with Dtf(x, t) no distinction will be made between the mapping and the evaluation
defining it, however.
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f is not differentiable in t nearly everywhere for all x ∈ R+ (Dtf(x, t) exists
for no t ∈ R+ if x = 0). However, reversing the roles of x and t we see that
for all t ∈ R+, f(x, t) is continuous and differentiable nearly everywhere in x
(Dxf(x, t) exists for all x > 0). Consequently theorem 5 applies. There exist
exactly two proper cones which define vector orders upon R, namely X+ = R+

and X+ = R−(:= −R+). The former has matrix representation P = 1, the
latter P = −1. By comparison with the condition of theorem 5, for f to
have increasing differences either t′xt′−1 − txt−1 ≥ 0 all t′ > t (P = 1) or
t′xt′−1 − txt−1 ≤ 0 all t′ > t (P = −1), x > 0. As may be checked the former
will be the case if (x, t) ∈ S = {(a, b) ∈ R++ × R+ : b ln a ≥ −1} while the
latter will be the case otherwise.

3.3 The Locally Lipschitz-continuous Case

Convex or concave functions need of course not be differentiable, but they
never the less possess very nice “pseudo-differentiability” properties which have
been exploited thoroughly in economic analysis. First, convex functions admit
one-sided directional derivatives everywhere, so f+

t,d(x) (cf. (2)) is always a
well-defined finite quantity. Secondly, a bounded convex function is locally
Lipschitz on the interior of its domain (Roberts and Varberg (1974)) and so
is differentiable almost everywhere by Rademacher’s theorem. To be more
specific, let f(x, t) be convex in t. v ∈ R

M is a subgradient of f(x, t) with
respect to t at a point (x0, t0) if:12

(7) f(x0, t) ≥ f(x0, t0) + (t − t0)
T v , for all t ∈ R

M

The set of subgradients at (x0, t0) is called the subdifferential and denoted
∂tf(x, t).

For locally Lipschitz continuous functions more generally, a slight weaken-
ing of the concept of directional derivative leads to a closely related construc-
tion. Moreover, it will allow us to exploit theorem 4 to obtain a very satisfac-
tory result characterizing increasing differences. What we have in mind is the
generalized directional derivative of Clarke (1983):

(8) f ◦
t,d(x) := lim

h→0+
sup
s→t

f(x, s + hd) − f(x, s)

h

When f is locally Lipschitz of rank k > 0 at a point t, the difference quotient

12If f is instead concave in t, we reverse the inequality-sign in (7) and still refer to v as a
subgradient.
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whose supremum enters in this definition is (locally) bounded from above by
k ‖d‖T . Hence f ◦

t,d(x) is well-defined. If f is convex in t, then f ◦
t,d(x) = f+

t,d(x).
If T+ is closed, increasing differences and lemma 1 imply that f ◦

t,d(x) must
be order-preserving in x for every t ∈ X and d ∈ T+. The converse is true
as an immediate consequence of theorem 4 for if f is locally Lipschitz in t
then fx,t,d(h) := f(x, t + hd) is locally Lipschitz in h and therefore absolutely
continuous in h. Never the less, this is not a very applicable result and in fact
we can do much better than that. f ◦

t,d(x) will be upper semicontinuous in (t, d)
for every fixed x ∈ X and as a function of d alone, f ◦

t,d(x) will be positively
homogenous and subadditive (Clarke (1983), proposition 2.1.1.). This allows
one to define the generalized derivative:

(9) ∂tf(t, x) := {v ∈ R
M : f ◦

t,d(x) ≥ dT v for all d ∈ T} ⊂ R
M

As it turns out (Clarke (1983), proposition 2.2.7), if f is convex and bounded,
the subdifferential and the generalized derivative coincide - hence the present
notation.

∂tf(t, x) will be a convex, non-empty subset of R
M ; if it is a unique element

it coincides with the usual derivate Dtf(t, x) (which therefore, in particular,
exists). Since economic analysis provides us with a firm intuitive grip of sub-
gradients, and the Lipschitz case does not upset this understanding, asking
what conditions on the convex-valued multifunction ∂tf(t, ·) : X → 2R

M
will

lead to increasing differences is perhaps the most obvious question one can
fathom within the agenda of this paper (at least as far as increasing differ-
ences is concerned). Once again, the answer turns out to be a simple one:

Theorem 6 Assume that f : X × T → R is locally Lipschitz continuous in
t ∈ T and that T+ is closed with matrix representation P ∈ R

M×P . Define

PT∂tf(x, t) = {q ∈ R
P : q = PT v, v ∈ ∂tf(x, t)} ⊆ R

P

whose section at t ∈ T is a well-defined convex-valued multifunction, PT ∂tf(·, t)
: x �→ 2R

P
. f(x, t) then has increasing differences in (x, t) if and only if for

every t ∈ T there exists an order-preserving selection ξ(x) ∈ PT ∂tf(x, t), all
x ∈ X, i.e., ξ : X → R

P such that ξ(x′) − ξ(x) ≥P 0 whenever x′ �X x.

Proof: “⇒”: For every d ∈ T+, f ◦
t,d(x) = maxv∈∂tf(x,t) dTv and so is a

selection from dT ∂tf(x, t) = {q ∈ R : dTv, v ∈ ∂tf(x, t)}. Since f ◦
t,d(x) is

order-preserving in x (T+ is closed), (f ◦
t,p1

(x), f ◦
t,m2

(x), . . . , f ◦
t,pP

(x)) is then an
order-preserving selection from PT ∂tf(x, t). “⇐”: Let ξ(x, t) be an arbitrary
order-preserving selection from PT ∂tf(x, t) and consider the i’th coordinate,
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ξi(x, t), which is obviously an order-preserving selection from pT
i ∂tf(x, t). Since

f is locally Lipschitz in t, it is locally Lipschitz in every direction d ∈ T . In par-
ticular, it is absolutely continuous hence ACG, in every direction. Again from
local Lipschitz continuity follows that f is differentiable almost everywhere in
t (Rademacher’s theorem). Consequently for any x ∈ X: ξi(x, t) = f ′

t,pi
(x) for

every t ∈ T where f ′
t,pi

(x) exists. The result now follows from theorem 4 since
P generates T+ and the derivative is a linear mapping when it exists. �

Recall theorem 5, which in the nearly everywhere differentiable case re-
quires that PT Dtf(x, t) is order-preserving in x between every two points
where the derivatives exist. One might conjecture that this situation can be
cast in the same way as theorem 6, but this is generally not true. The reason
is that unless f is locally Lipschitz in t, ∂tf(x, t) may well be empty at points
of non-differentiability. Economically put, there may be points which do not
have any vector of shadow prices associated with them. Of course we cannot
then seek an order-preserving selection from the generalized derivative for it
is not well-defined. It is important to realize that theorem 4 - which states
that if f is merely directionally ACG in t, then we can recover f from “what
exists of its derivative”- is typically too abstract to be applicable. It is easy to
simply assume that a function is ACG (for example, absolutely continuous),
but from a practical perspective how do we verify it and how do we verify the
resulting conditions on the derivatives expressed in theorem 4 ? These are the
difficult questions. By the results so far, we now know two cases where this can
be done: The nearly everywhere differentiable case and the locally Lipschitz
continuous case (both of which contain the continuously differentiable case as
a special case).

4 Supermodularity

We now turn to establish a result by which one can establish supermodularity
of f(x, t) in x on X when X is not a Euclidean vector lattice. We shall need
this result for our applications.

Recall that a real-valued function f defined on a lattice X is supermodular
provided that f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) for all x, y ∈ X. Here x ∨ y
(the join) is the supremum of x and y and x ∧ y (the meet) is the infimum as
defined above. Topkis (1978) proves the equivalence of supermodularity and
increasing differences for a function f : X → R, where X is a finite dimensional
product set X = ×α∈AXα, each Xα a chain in its order �α, and X ordered
by the product order x �x x′ ⇔ [xα �α x′

α for all α ∈ A]. Obviously this

13

Jensen: Monotone Comparative Statics in Ordered Vector Spaces

Published by The Berkeley Electronic Press, 2007



definition cannot be used here because we consider vector spaces ordered by
an arbitrary proper cone X+.13

Say that x and y are disjoint, written x ⊥ y, if the infimum of x and y
is zero, i.e., if x ∧ y = 0 (cf. Schaefer (1999), chapter 5, section 1). If, for
example, X+ = R

N
+ in R

N , according to this definition x ⊥ y if and only if
(min{x1, y1}, . . . , min{xN , yN}) = (0, . . . , 0), i.e., xT y = 0. So this is just the
usual inner product definition of orthogonality.

Definition Let X be an ordered vector space. A function f : X → R is
said to have increasing differences in x on X provided that for all d ∈ X+,
f(x + d) − f(x) is order-preserving in x in all directions d̃ which are disjoint
from d, i.e., if:

(10) f(x + d + d̃) − f(x + d) ≥ f(x + d̃) − f(x)

for all x ∈ X and all d, d̃ ∈ X+ with d ⊥ d̃.

The next result shows that the previous definition of increasing differences
is in fact equivalent to supermodularity.

Theorem 7 Assume that X is a vector lattice and consider a function f :
X → R. Then f has increasing differences in x on X if and only if f is
supermodular in x on X.

Proof: “⇒”: Pick x, y ∈ X, set d = x− (x∧y), d̃ = y− (x∧y) and note that
d, d̃ ∈ X+ and, since X is a vector lattice, d∧ d̃ = (x− (x∧y))∧ (y− (x∧y)) =
(x∧ y)− (x∧ y) = 0. Since X is a vector lattice, the following identity is valid
for all x, y ∈ X: x+y = x∧y +x∨y (cf. Birkhoff (1967), chapter 15, theorem
1). Substitute for x with d + (x ∧ y) and for y with d̃ + (x ∧ y) to get: (†)
x∨y = (x∧y)+d+d̃. By assumption f(a+d+d̃)−f(a+d̃) ≥ f(a+d)−f(a) for
d, d̃ ∈ X+ as chosen and every a ∈ X. Now simply take a = x∧y and use (†) to
see that: f(x ∨ y) − f(y) ≥ f(x) − f(x ∧ y). “⇐”: Pick a ∈ X and d, d̃ ∈ X+

such that d ⊥ d̃. By supermodularity f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).
Now pick x = a + d and y = a + d̃. Clearly, x ∧ y = a + (d ∧ d̃) = a.
Hence, x ∨ y = a + (d ∨ d̃) = a + d + d̃ − (d ∧ d̃) = a + d + d̃. Insert to get:
f(a + d + d̃) + f(a) ≥ f(a + d) + f(a + d̃). �

The theorem above is true for functions defined on arbitrary sublattices of
vector lattices (in particular the dimension need not be finite). In the present

13This definition worked in the previous section exactly because there we considered the
product set X × T .
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case where X is an N -dimensional vector lattice with a closed cone, the result
can be interpreted as a suitable change of basis. Indeed, if x, x′ ∈ R

N are
elements from a vector lattice X with a positive cone represented by Q =
[q1, . . . , qN ], then,

(11) x ∧ x′ =
N∑

n=1

min{αn, α′
n}qn and x ∨ x′ =

N∑
n=1

max{αn, α′
n}qn

where (α1, . . . , αN) are the coordinates of x in the basis for R
N determined by

Q’s columns, i.e., the unique vector such that x =
∑N

n=1 αnqn (and similarly

for x′ =
∑N

n=1 α′
nqn). From this is seen that if X = (RN ,≥N ), then a function

f : X → R has increasing differences in the sense of the definition above if
and only if it has increasing differences in the sense of Topkis (1978) (see also
Topkis (1998)). However, the definition is not equivalent to Topkis’ definition
on more general product ordered sets.14 From (11) is also seen that when
Q is a full rank matrix representation and consequently has an inverse Q−1,
then the requirement that x and x′ are disjoint, i.e., x ∧ y = 0, is equivalent
to xT (Q−1)TQ−1x′ = 0. If in particular the order is ≥N (Euclidean product
order, Q = IN), disjointness reads simply xT x′ = 0, hence as special cases
of the results below we find the characterization of supermodularity given in
Topkis (1978).

The next result, the proof of which is straight-forward in light of the pre-
vious observations, describes under what conditions a function f defined on a
vector lattice will be supermodular. Taking Q as the identity matrix (so �X is
the usual order), we recover the well-known characterization result of Topkis
(1978) mentioned in the previous section.

Theorem 8 Consider a function f : X → R where X is a conditionally
complete vector lattice whose positive cone’s (full rank) matrix representation
is Q ∈ R

N×N .

1. Assume that f is continuous and differentiable nearly everywhere. Then
f will be supermodular in x on X if and only if QT [Df(x′)−Df(x)] ≥N 0
whenever x′ − x ∈ cone(Q), xT (Q−1)TQ−1x′ = 0, and the concerned
derivatives exist.

14This observation is in fact obvious in light of an example in Topkis (1978) of a product
ordered set in which a function has increasing differences but is not supermodular. This
function can consequently not have increasing differences according to our definition since
this would contradict theorem 7.
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2. Assume that f is continuously differentiable and twice differentiable near-
ly everywhere. Denote by D2f(x) the Hesse matrix (when it is defined).
Then f is supermodular if and only if the N by N matrix:

(12) QT D2f(x)Q

has non-negative off-diagonal elements for all x ∈ {x ∈ X : D2f(x)
exists}.

5 Two Applications

5.1 A Teamwork Game with Multiple Projects

Consider a teamwork game where two economists i = 1, 2 coauthor two pa-
pers.15 Player i must choose levels of effort s1

i and s2
i to put into, respectively,

the first and second paper. The higher the effort, the higher the probability
of success=publication and the higher therefore, the expected gain g(s1, s2)
(here si = (s1

i , s
2
i )). The cost to placing effort si into working on the papers is

Ci(si), and so the (expected) payoff function is πi(si, s−i) = g(si, s−i)−Ci(si),
i = 1, 2. Each player’s feasible effort is bounded above, say, Si = {(s1

i , s
2
i ) ∈

R
2
+ : s1

i + s2
i ≤ 1}. Thus the players face a resource allocation decision.16

We wish to investigate when this game will be supermodular or submodular
in a suitably chosen vector order. As explained in the proof of theorem 2, Si

will be a sublattice of R
2 w.r.t. a vector order �Si

with matrix representation
Q ∈ R

2×2 if and only if Q−1(Si) is a Euclidean sublattice of R
2. By an

argument similar to the one used in the proof of that same theorem, one easily

sees that this will be the case if and only if the 3 by 2 matrix,

[ −1 −1
1 0
0 1

]
·Q ,

has the property that the product of the two elements in each row is non-
positive. There are many vector orders which have this property (but the
usual order is not among them). We shall consider here the order �i whose

matrix representation is Q =

[
−1 −1

1 0

]
.17 The product order �S=�Si

× �Si

is then placed on the joint strategy set S = S1 × S2.

15The following example is a variation of the teamwork game studied in Dubey et al.
(2006).

16Of course the 1 is just a normalization. The point is that the players can only do research
for a certain number of hours each day.

17This is not a random choice. This is the finest vector order (the one with the smallest
positive cone) under which Si becomes a sublattice.
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Applying theorem 5 one finds that player i’s objective function will ex-

hibit increasing differences if and only if ∂2g(si,s̄−i)

∂s1
i ∂s̄1

−i
≥ 0, ∂2g(si,s̄−i)

∂s1
i ∂s̄2

−i
, ∂2g(si,s̄−i)

∂s2
i ∂s̄1

−i
≤

∂2g(si,s̄−i)

∂s1
i ∂s̄1

−i
, and ∂2g(si,s̄−i)

∂s1
i ∂s̄2

−i
+ ∂2g(si,s̄−i)

∂s2
i ∂s̄1

−i
≤ ∂2g(si,s̄−i)

∂s1
i ∂s̄1

−i
+ ∂2g(si,s̄−i)

∂s2
i ∂s̄2

−i
. It will exhibit

decreasing differences if all of the inequalities are reversed.18

These conditions are very intuitive: When ∂2g(si,s̄−i)

∂s1
i ∂s̄1

−i
≥ 0 (strategic comple-

mentarity), the spill-over effects between the projects ∂2g(si,s̄−i)

∂s1
i ∂s̄2

−i
and ∂2g(si,s̄−i)

∂s2
i ∂s̄1

−i

must not be so strong that they dominate the direct complementarity effects.
Applying theorem 8, one finds that the objective functions will be supermod-

ular if and only if ∂2πi(si,s̄−i)

∂2s1
i

≥ ∂2πi(si,s̄−i)

∂s1
i ∂s2

i
. If, say, πi is concave in s1

i (overall

quasi-concavity in si again plays no role), this condition demands that there is a
sufficiently strong substitution effect between the two strategies (the marginal
payoff to s1

i must be decreasing in s2
i ).

5.2 Maximization of Value Functions

Applications of monotone methods are often motivated by lack of quasi-concav-
ity of the relevant objective functions while smoothness is not a critical extra
assumption. There is, however, a whole class of applications where this is not
so. In any model where an indirect utility function is maximized, differen-
tiability of the (direct) utility function is of no importance for whether the
indirect utility function is differentiable. This depends entirely on whether the
underlying maximizer is unique. To be specific, the class of problems in mind
usually fits into the following very general welfare problem where V 1, . . . , V I

are indirect utility functions and W a social welfare function:

(13)
max W (V 1(t; x), . . . , V 1(t; x))
s.t.

{
x ∈ Γ(t)

Here t ∈ R
N
+ is taken as given and x ∈ R

M is the maximizer. The general
interpretation is that a social planner must choose a policy variable in an
environment where the individual agents’ maximizing behavior depends on
the policy pursued. In the wealth distribution problem (see Mas-Colell et al.

18Whether ∂2g(si,s̄−i)
∂s1

i ∂s̄1
−i

will be negative (strategic substitutes) or positive (strategic com-

plements) depends on the specification of g. Substitutes arises in the case where only one
author has to succeed for the paper to succeed; while complements arise when both must
make a good contribution for the paper to get published. See Dubey et al. (2006) and also
Jensen (2005).
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(1995), chapter 4), the objective is to distribute aggregate income among the
consumers such that the social welfare criterion W is maximized. Here x =
(w1, . . . , wI), t = (p, w) (prices and aggregate income), and Γ(t) = {x =
(w1, . . . , wI) ≥ 0 :

∑
i w

i ≤ w}. In optimal taxation models the objective is to
maximize the indirect utility of (typically) a representative consumer subject
to the requirement that some prespecified amount of revenue is raised (see e.g.
Auerbach and Hines (2001)). Here I = 1, W the identity, t is a vector of
producer prices, and x a vector of commodity tax rates.

One of the simplest applications of this framework is in monopoly union
models of labor economics. There are many variations, but the one we consider
here seems to include most of them (e.g. the one used in Soskice and Iversen
(2000)). The union seeks to maximize a utilitarian social welfare function
whose entries are the indirect utility functions of its members. The indirect
utility of worker i is V i(p, w).19

(14)
max

∑
i V

i(p, w)
s.t. w ∈ R+

To relate the properties of utility functions to their value functions (the in-
direct utility functions), one uses an envelope theorem. As mentioned above,
V i will not be differentiable at a point unless the worker’s optimal choice is
unique. But because of the results in section 3, differentiability is not needed
in the first place. The reader who is familiar with non-smooth analysis will
know that there basically is an envelope theorem for each of the situations
studied in that section. One instance is due to Clarke (Clarke (1975), theorem
2.1.) and produces a value function which is locally Lipschitz. Theorem 6
can then be applied.20 Since a locally Lipschitz continuous function is differ-
entiable almost everywhere the convex-valued multifunction (here we take the
usual order P = 1, and t in the theorem to be the wage w) ∂w

∑
i V

i(p, w)
will be single-valued almost everywhere and equal to the shadow price of a
marginal change in the wage. By theorem 6, the union’s objective function

19What follows is only interesting when V i is not homogenous of degree 0 in (p, w) which
is the case, for example, when workers receive nominal income transfers (see also Soskice and
Iversen (2000) for a model with monetary non-neutrality). The basic idea is that the union
knows the firms’ aggregate labor demand curve and work is distributed (perhaps randomly)
across the members.

20In its simplest special case, Clarke’s result requires that the problem can be recast as
an unconstrained optimization problem with an objective function which is upper semi-
continuous and continuously differentiable in the parameters (in fact, in this simple formu-
lation the result appears to be originally due to Danskin (1967), though I am unsure whether
Danskin also proved that the value function will be locally Lipschitz).
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will exhibit increasing differences in w and some parameter, say p, if and only
if ∂w

∑
i V

i(·, w) : R+ → 2R has an order-preserving selection for every fixed w.
Since supermodularity is automatically satisfied, it follows immediately that
if V =

∑
i V

i exhibits increasing differences, then an increase in the general
price level p will make the union increase the wage rate w in response. The
intuition here is relatively simple: When ∂w

∑
i V

i(p, w) is single-valued the
requirement is simply that the marginal utility of an increase in the wage must
be increasing in the general price level p. When ∂w

∑
i V

i(p, w) is not single-
valued, the concept of a marginal utility of the wage is not well-defined. But
under the conditions above, the value function does have well-defined right
and left partial (directional) derivatives and ∂w

∑
i V

i(·, w) is then the entire
interval between these. If both of the directional derivatives are increasing
in p, some selection from ∂w

∑
i V

i(·, w) is therefore certainly increasing. The
right partial derivative is the marginal utility from an increase in the wage,
the left derivative equals minus the marginal utility from a decrease in the
wage. Bearing this in mind, the intuition from the single-valued case carries
over directly: There may be many combinations of p and w where an increase
and a decrease in the wage set by the union yield different marginal benefits,
but as long as both of these are always increasing in p it will nevertheless be
the case that the union raises w with p.
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