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1 Introduction

In the standard formulation of a non-cooperative game, a player’s payoff function
depends on opponents’ individual strategies. Yet, in many games, payoff functions
depend only on some aggregate of these, an example being the Cournot model where
it is the aggregate supply of opponents that matters rather than their individual strate-
gies. Within recent years such aggregative games have attracted considerable atten-
tion, leading to papers on evolutionary stability, Knightian uncertainty, learning dy-
namics, and evolution of preferences, to mention a few.1

This paper’s two main objectives are, firstly, to define a new and very general
notion of aggregation, called quasi-aggregation, and secondly, to prove that if all
best-reply selections are either increasing or decreasing, quasi-aggregative games are
best-reply potential games (Voorneveld (2000)). If it is only assumed that some se-
lection has this property, the games are pseudo-potential games (Dubey et al. (2006)).
A direct consequence of these results is that such games have a pure strategy Nash
equilibrium (PSNE) irrespective of whether strategy sets are convex or payoff func-
tions quasi-concave. A second consequence is that Liapunov methods can be used
to address their stability properties. Thus it is shown, for example, that with single-
valued best-replies, a unique PSNE will always be globally stable under the game’s
myopic best-reply dynamics. If best-replies are not single-valued, the same is true
provided that certain “perverse” paths are ruled out.

The results can be seen as a direct continuation of Dubey et al. (2006), who de-
fine pseudo-potential games and show that any game with linear aggregation and an
increasing or decreasing continuous best-reply selection, belongs to this class. The
authors also extend this observation to aggregation rules which are only required to
be symmetric and linear in any single player’s strategy.2 The cases studied by Dubey
et al. (2006) and generalized in Kukushkin (2005) are special cases of this paper’s
class of games. Hence they lead to best-reply potential games if all best-replies are
decreasing and pseudo-potential games if some selection is decreasing (whether or
not this selection is continuous). That a game is a best-reply potential game and not
some weaker notion of a potential game, plays a crucial role for our main stability
results. It is obviously also crucial if, say, one wants to apply the robustness results
of Morris and Ui (2004) (which, to be sure, concerns best-reply potential games).

Quasi-aggregative games also include as a special case Alos-Ferrer and Ania
(2005)’s notion of a generalized symmetric aggregative game (see also Schipper
(2005)). In particular it will follow that a PSNE exists in such games under Alos-
Ferrer and Ania’s assumptions. Generalized symmetric aggregation is in some re-
spects the aggregator concept which is most closely related to this paper’s. Neither

1 See e.g. Morris and Ui (2004), Possajennikov (2003), Alos-Ferrer and Ania (2005), Schipper (2005),
and Kockesen et al. (2000). For a long list of specific examples see Alos-Ferrer and Ania (2005). The
concept of aggregation in that paper (“generalized symmetric aggregation”) is returned to below.

2 The mentioned class will be considered in section 2.3.3 of this paper. See also Kukushkin (2005), who
proves that such games admit a so-called Cournot potential if all best-reply selections are either increasing
or decreasing. A Cournot potential is, roughly, an order theoretic equivalent to a generalized best-reply
potential.
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assumes that aggregators have a specific functional form, and in both cases, the per-
missible functions can be viewed as the general solution to a set of functional equa-
tions.3 A difference is that quasi-aggregators are not required to be symmetric func-
tions. A somewhat more fundamental difference is that in quasi-aggregative games,
strategy sets may be multidimensional (see the first application in section 5 for an
example with multi-dimensional strategy sets).

The organization of this paper is as follows: Section 2 contains the basic defini-
tions, assumptions, and describes various special cases of quasi-aggregative games
(existing as well as new ones). Sections 3-4 contain the main results (the proofs are
relegated to section 6 at the end of the paper). Finally, section 5 contains two applica-
tions to games which are not covered by any of the previously mentioned aggregation
concepts.

2 Definitions and Assumptions

Let Γ = (π̃i,Si)i∈I denote a non-cooperative, pure strategy game with a finite set of
players I = {1, . . . , I}, and finite dimensional strategy sets Si ⊆ RN . The joint strat-
egy set S = ∏i∈I Si, is assumed to be a compact metric space, and payoff functions
π̃i : S→ R, i ∈ I are assumed to be upper semi-continuous. The best-reply corre-
spondences R̃i(s−i) = argmax{π̃i(si,s−i) : si ∈ Si}, s−i ∈ S−i = ∏ j 6=i S j, i ∈ I , are
consequently non-empty valued and upper hemi-continuous. No other standard as-
sumptions such as quasi-concavity of payoff functions and convexity of strategy sets,
are imposed.

2.1 Quasi-Aggregative Games

Consider a game such as the Cournot model, π̃i(s) = siP(si +∑ j 6=i s j)−Ci(si) (here P
is the inverse demand function and Ci the cost function of firm i). Defining σi(s−i) =
∑ j 6=i s j we can write: π̃i(s) = πi(σi(s−i),si), i ∈ I . Intuitively, players only influ-
ence each other through the terms σi(s−i) = ∑ j 6=i s j, called the interaction functions.
Defining g(s) = ∑i si, it is furthermore true that g(s) = Fi(σi(s−i),si) for all i where
Fi(σi(s−i),si) = σi(s−i)+ si. In words, there exists a function g, the aggregator, the
value of which g(s) can always be calculated (via Fi) from knowledge of a player i’s
strategy and the interaction term σi(s−i). These two abstract features of the Cournot
model form the basis of this paper’s central definition:

Definition 1 (Quasi-Aggregative Games) The game Γ = (π̃i,Si)i∈I is said to be a
quasi-aggregative game with aggregator g : S→R, if there exist continuous functions
Fi : R×Si→ R (the shift functions), and σi : S−i→ X−i ⊆ R, i ∈I (the interaction
functions) such that each of the payoff functions i ∈I can be written:

π̃i(s) = πi(σi(s−i),si) (1)

3 For the concept of a functional equation, see Aczél (2006).
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where πi : X−i×Si→ R, and:

g(s) = Fi(σi(s−i),si), for all s ∈ S and all i ∈I (2)

Remark 21 As is clear from the definition, a quasi-aggregative game is an ordinal
concept, i.e., all functions involved are only determined up to a strictly monotonic
transformation (which may be either strictly increasing or strictly decreasing).4

An alternative, but less general way of defining a quasi-aggregative game replaces
(1) in the definition with:

π̃i(s) = π̂i(g(s),si) (3)

Here π̂i : X × Si → R and X = g(S) ⊆ R. In this formulation, payoff functions
can be written as a function of si and the aggregate g(s). Since one may simply insert
(2) into (3) in order to get (1): πi(σi(s−i),si) = π̂i(Fi(σi(s−i),si),si), it is clear that
(3) is a special case of (1) when g can be made to satisfy the conditions in (2) for
suitably chosen functions Fi and σi, i ∈I . These shift and interaction functions will
then play an auxiliary role, although the latter will always have the aforementioned
game theoretic interpretation as “the channels through which players exert influence
on each other”. Thus in the Cournot model, π̃i(s) = π̂i(g(s),si) where g(s) = ∑i si
and π̂i(g(s),si) = siP(g(s))−Ci(si). Associated shift and interaction functions were
found at the beginning of this section. Notice how the argument now begins with
knowledge of the aggregator g and proceeds to determine the functions Fi and σi,
i ∈I .

The main feature of a quasi-aggregative game is captured by the weak separabil-
ity conditions in (1). As in the Cournot example above, players only influence each
other through certain real-valued functions, σi : S−i→R. These functions are not as-
sumed to be linear, however. They are now allowed to take any form compatible with
the existence of an aggregator g and shift functions Fi, i ∈I such that (2) holds. (2)
is a system of functional equations and any solution, or class of solutions, will form
a special case of quasi-aggregative games. In section 2.3 a number of such solutions
will be considered and as will become clear the class of permissible functional forms
is substantial. There is one set of solutions which is well known and worth mention-
ing already here, however. (2) will be satisfied for strictly monotonic functions Fi and
σi provided that g is additively separable (Gorman (1968)). The converse is true as
well: if (2) holds for strictly monotonic functions Fi and σi, then g will be additively
separable. If one’s starting point is payoff functions in the form (3) where g is ad-
ditively separable, the game is consequently quasi-aggregative (see section 2.3.2 for
further details). It is important to stress, then, that this paper does not assume that
Fi and σi are monotonic, in particular g is not (implicitly) assumed to be additively
separable. In fact, this paper’s only assumption in this respect (assumption 2) will be
seen to be a second order condition. As such no monotonicity assumptions are placed
on any function what so ever.5 Nonetheless, nothing prevents us from thinking of (2)

4 Hence the term quasi-aggregative. The observation is trivial for the interaction functions. It is also
clear that (2) will hold for functions g and Fi, i ∈ I if and only if it holds for g̃ = h ◦ g and F̃i = h ◦Fi,
i ∈I where h : R→ R is either strictly increasing or strictly decreasing.

5 The simplest example of a function admitted by (2) which is not additively separable is g(s) = ∏i si
when 0 ∈ Si for some i.
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as weak “independence” conditions (cf. Gorman (1968), Vind and Grodal (2003))
which, crucially, are imposed without any associated monotonicity or sensitivity as-
sumptions.

Before turning to assumptions and examples, let us introduce a direct general-
ization of quasi-aggregative games. All of this paper’s results remain valid for this
larger class of games. In sections 2.3.3-2.3.5 we shall encounter games which are
generalized quasi-aggregative but (typically) not quasi-aggregative.

Definition 2 (Generalized Quasi-Aggregative Games) The game Γ = (π̃i,Si)i∈I
is said to be generalized quasi-aggregative if it satisfies definition 1 with (2) replaced
by the weaker set of conditions:

g(s) = Fi(σi(s−i),si)+ vi(s−i), for all s ∈ S and all i ∈I (4)

where v1, . . . ,vI may be arbitrary real-valued functions.

As can be seen, the only difference between this definition and definition 1, is that
the set of permissible functional forms has been expanded. On the downside, a gener-
alized quasi-aggregative game is not subject to arbitrary monotonic transformations
of the aggregation conditions (4). Indeed, any monotonic transformation h of g and
the Fi’s must be affine, h(z) = az +b where a ∈ R\{0}, b ∈ R. A generalized quasi-
aggregative game is therefore, in some sense, an aesthetically less pleasing concept
than a quasi-aggregative game.

We end this section with an example of a function g that does not satisfy (4) for
any choice of functions Fi, σi, and vi, i ∈ I . It follows that there are games of the
form (3) that cannot be (generalized) quasi-aggregative.

Example 1 Consider a game with three players whose payoff functions satisfy (3)
for g(s1,s2,s3) = 1

2 s2
1s2 + 1

3 s3
1s3 + s1s2 (here Si ⊆R, i = 1,2,3, and it is assumed that

S2 contains at least two distinct strategies). There do not exist functions σi, Fi, and vi,
i = 1,2,3, such that (4) holds. If (4) were to hold for player i = 1, it would follow that
(∗) Ds1g(s) = Ds1F1(σ1(s−1),s1). (∗) implies that for any fixed ŝ1 ∈ S1, the derivative
Ds1g(ŝ1, ·, ·) is constant on any of the sets ∆1(α,s1) = {(s2,s3) ∈ S2×S3 : Ds1g(s) =
α} = {(s2,s3) : s1s2 + s2

1s3 + s2 = α}, s1 ∈ S1 and α ∈ g(S). But this is not true.
For example consider Ds1g(2,s2,s3) = 2s2 +4s3 + s2 on the set ∆1(1,1) = {(s2,s3) :
s3 = 1− 2s2}. Ds1g(2,s2,s3) will be constant only if 2s2 + 4− 8s2 + s2 = 4− 5s2 is
constant and this is not the case.

2.2 Assumptions

We shall be needing two assumptions throughout. Recall from definition 1 that σi :
S−i → X−i ⊆ R. In the following it is convenient to set X−i = σi(S−i) (the range of
σi). When a game is (generalized) quasi-aggregative, it will be true that R̃i(s−i) =
Ri(σi(s−i)) where Ri : X−i→ 2Si is given by Ri(x−i) = argmax{πi(x−i,si) : si ∈ Si}.
Intuitively, Ri is the “reduced” best-reply correspondence which describes how agent
i’s best-replies depend on the interaction term x−i = σi(s−i). Our first assumption is
placed directly on these correspondences.
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Assumption 1 Each of the correspondences Ri : X−i → 2Si has a decreasing selec-
tion, i.e., there exists a function ri : X−i→ Si with ri(x−i)∈ Ri(x−i), all x−i ∈ X−i such
that ri(x̃−i)≥ ri(x−i) whenever x̃−i ≤ x−i.

Sometimes we shall also consider the following strengthened version of assump-
tion 1:

Assumption 1′ Each of the correspondences Ri : X−i→ 2Si is strictly decreasing (i.e.,
every selection from Ri is decreasing).

Remark 22 Assumption 1 will be satisfied under the conditions of Topkis’ Theorem
(Topkis (1998)): Each Si a lattice, every πi(x−i,si) supermodular in si, and exhibiting
decreasing differences in x−i and si (for the relevant definitions see Topkis (1998).
The definition of decreasing differences plays a separate role in this paper and is
reproduced right after this remark). If strategy sets are one-dimensional, the first two
of these requirements will automatically be satisfied, so if πi is C2 an easily checked
sufficient condition is that D2

x−isi
πi(x−i,si)≤ 0. Assumption 1′ holds in this case if the

inequality is strict: D2
x−isi

πi(x−i,si) < 0.

Recall that Fi : X−i×Si→ R exhibits strictly increasing (decreasing) differences
if Fi(x̃−i, s̃i)−Fi(x−i, s̃i) > (<) Fi(x̃−i,si)−Fi(x−i,si) whenever x̃−i > x−i and s̃i > si
(Topkis (1998)).

Assumption 2 The shift-functions Fi, i ∈ I , all exhibit strictly increasing differ-
ences in x−i and si (possibly after a strictly monotonic transformation).

Because the interaction and shift functions are only determined up to strictly
monotonic transformations (affine in the case of Fi when the game is generalized
aggregative), assumption 1 may be replaced by the assumption that each of the corre-
spondences Ri has an increasing selection. This is so because we may write, Ri(σi(s−i))=
Ri(−σ̃i(s−i)) where σ̃i(s−i) = −σi(s−i), and in terms of definitions 1-2 we then re-
place g with g̃(s) = −g(s) and Fi with F̃i(σ̃i(s−i),si) = −Fi(−σ̃i(s−i),si). Clearly,
F̃i(x−i,si) exhibits strictly increasing differences in x−i and si if and only if Fi does. So
assumption 2 will still hold. For much the same reason, assumption 2 can be replaced
with the assumption that each Fi exhibits strictly decreasing differences (simply take
g̃(s) = −g(s) and F̃i(x−i,si) = −Fi(x−i,si) so that F̃i exhibits strictly increasing dif-
ferences). In fact, any “permutation” is clearly seen to be allowed: For example, we
could assume that for all i, either (i) Ri has an increasing selection and Fi exhibits
strictly increasing differences, or (ii) Ri has a decreasing selection and Fi exhibits
strictly decreasing differences. This allows for a mixture of strategic substitutes and
strategic complements across the agents.

If each interaction function σi is coordinatewise decreasing and assumption 1
holds, then every best-reply correspondence R̃i, i ∈ I will have an increasing se-
lection (namely the composition ri(σi(s−i)) ∈ R̃i(s−i), where ri is the selection from
assumption 1). Dubey et al. (2006) call a game with an increasing best-reply selec-
tion a game of weak strategic complements (WSTC). Similarly, the game will be
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a game of weak strategic substitutes (WSTS) if each σi is coordinatewise increas-
ing and assumption 1 holds.6 Assumptions 1-2 do not imply that the interaction
functions are either decreasing or increasing, however. In particular, a (generalized)
quasi-aggregative game need be neither a WSTC or a WSTS under this paper’s as-
sumptions. The following example illustrates this point.

Example 2 Let σi(s−i) = ∏ j 6=i(1− s j), and assume that π̃i(s) = πi(σi(s−i),si) for
all i. This game is aggregative as seen by taking g(s) =−∏i(1− si) and Fi(x−i,si) =
x−i(si−1) for all i. Fi exhibits strictly increasing differences since D2

x−isi
Fi(x−i,si) =

1 > 0. Take for example I = 3 and consider the first player. σ1(s−1) = (1− s2)(1−
s3) so ∂σ1(s−1)

∂ s2
≥ 0 ⇔ s3 ≥ 1. So whether the first player’s interaction function is

increasing, decreasing, or constant in the second player’s strategy, depends on the
strategy chosen by the third player. Accordingly, under assumption 1, player 1’s best-
replies may be increasing, decreasing, or constant in s2 depending on s3 (and so the
game cannot be a WSTC or a WSTS or, for that matter, submodular or supermodular).

The next example shows that in at least one common case, it is necessary to apply
a monotone transformation in order for assumption 2 to be satisfied.

Example 3 Take the linear sum case, g(s) = ∑i si, σi(s−i) = ∑ j 6=i s j, and Fi(x−i,si) =
x−i + si which defines an aggregative game if π̃i(s) = πi(∑ j 6=i s j,si) for all i. Fi does
not exhibit strictly increasing differences. However, there obviously exists a monotone
transformation such that h◦Fi does satisfies assumption 2 for all i (h(z) = exp(z), for
one).

We end this section with an example of a quasi-aggregative game which does not
satisfy assumption 2.

Example 4 Let each player i’s payoff function depend on si and σi(s−i) = max j 6=i s j.
This is an aggregative game because we may take g(s) = maxi si and Fi(x−i,si) =
max{x−i,si}. Assumption 2 is not satisfied, for this requires that, max{x̃−i, s̃i} −
max{x−i, s̃i} > max{x̃−i,si} −max{x−i,si} whenever x̃−i > x−i and s̃i > si (and
equality holds when, say, si ≥ x̃−i). It is also clear that no monotonic transforma-
tion will resolve this problem.

2.3 Special Cases

Each class of solutions to (2)/(4) will yield a special case of a quasi-aggregative
game/ generalized quasi-aggregative game. In this section a number of such classes
are considered.

6 Following Dubey et al. (2006)’s terminology, a generalized aggregative game might then, when the
σi’s are increasing or decreasing, be called a WSTS/WSTC with generalized quasi-aggregation (and possi-
bly discontinuous best-reply selections).
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2.3.1 Generalized Symmetric Aggregators (Alos-Ferrer and Ania (2005))

Let strategy sets be compact subset of the reals, Si ⊆R, for all i, and ◦ : X×X→ X an
increasing and continuous function (here X is an interval in R large enough to ensure
that Si ⊆ X for all i).7 For n = 2,3, . . . , I let,

◦n (s1, . . . ,sn) = ◦(◦n−1(s1, . . . ,sn−1),sn) where ◦1(si)≡ si (5)

Next assume that every “iterate” ◦n : Xn → X is a symmetric function, and take as
aggregator in a game with I players:

g(s)≡ ◦I(s1, . . . ,sI) (6)

An aggregator constructed in this manner is called a generalized (symmetric) ag-
gregator in Alos-Ferrer and Ania (2005) (the reader is referred to that paper for a long
list of examples). By taking σi(s−i)≡ ◦I−1(s−i) and Fi(x−i,si)≡ ◦(x−i,si) for all i, it
is clear that any such aggregator will satisfy (2). Thus if payoff functions satisfy (1)
or the more special form (3), the game will be quasi-aggregative. The assumptions on
◦ in Alos-Ferrer and Ania (2005) as reproduced above (◦ increasing, symmetric, and
strategy sets one-dimensional) are all unnecessary for this paper’s results.8

2.3.2 Disguised Aggregative Games (Cornes and Hartley (2001)), Generalized
Means

Cornes and Hartley (2001) investigate aggregative games with main focus on the
backward reply correspondence bi(Q)= {si ∈ Si : si ∈ R̃i(s−i),g(s)= Q} (cf. Novshek
(1985)), which the authors also call the replacement correspondence. Cornes and
Hartley (2001) prove that if payoffs can be cast in the form (3) for an aggregator
g which is twice continuously differentiable and strictly monotonic and the game
admits a replacement correspondence, then g must be additively separable.9 As ex-
plained in section 2.1, all such games will consequently be quasi-aggregative.

Another central element in Cornes and Hartley’s paper is the notion that g(s)
can be seen as a “statistic” (and they give many examples to this effect). There is
potentially a close connection between this observation and the generalized symmet-
ric aggregators of the previous section. Thus if ◦ in that construction is a strictly
increasing function, g will be a generalized symmetric aggregator if and only if
g(s) = f−1(∑i f (si)) for some strictly increasing function f .10 Applying the strictly

7 We follow here Schipper (2005) (Definition 3) in taking the domain of ◦ to be X×X which of course
has a restriction to X−i×Si which then corresponds to Fi of our definition 1.

8 The only condition one must verify is that Fi := ◦ satisfies assumption 2. This is automatically sat-
isfied, possibly after a monotonic transformation, when ◦ is increasing (in particular, assumption 2 is
satisfied under the conditions of Alos-Ferrer and Ania (2005)). The recursive definition extends to multi-
dimensional strategy sets in the obvious manner by taking ◦ : X ×T → X , X ⊆ R and Si ⊆ T ⊆ RN . If ◦1

is not the identity function in one dimension (and chosen suitably in multiple dimensions), g will not be
symmetric.

9 A function g : X → R, X ⊆ RN , is additively separable if and only if there exist strictly increasing
functions f0, . . . , fN : R→R, such that f0(g(s)) = ∑n fn(sn) for all s∈ X . See for example Gorman (1968).

10 For a detailed proof of this result see the working paper version of this paper (Jensen (2006)), espe-
cially Theorem 8 and its corollary.
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increasing transformation z 7→ f−1(I−1 f (z)), we can write this in the more familiar
form of a generalized mean (also called a generalized f -mean or quasi-arithmetic
mean):

g(s) = f−1(
1
I ∑

i
f (si)) (7)

All the standard means are special cases of the generalized mean, including the
harmonic mean ( f (x) = x−1), the geometric mean ( f (x) = lnx), and the power means
( f (x) = xk where k ∈ N). In particular, a game where each player’s payoff function
depends only on her own strategy and some generalized mean, is quasi-aggregative.
Assumption 2 is automatically satisfied. Indeed, taking g̃ = exp[ f ◦ g], one sees that
g̃(s) = Fi(si,σi(s−i)) = [exp( f (si))] ·σi(s−i), where σi(s−i) = ∏ j 6=i exp( f (s j)). Since
f is strictly increasing, Fi exhibits strictly increasing differences in its two arguments.
As for assumption 1 (assumption 1′), this will hold if each player’s payoff function
exhibits (strictly) decreasing differences in si and the opponents’ strategies s−i.

2.3.3 Games with Reciprocal Interactions (Dubey et al (2006), Kukushkin (2005))

Γ is a game with reciprocal interactions, if π̃i(s) = πi(σi(s−i),si) for all i, where the
σi’s are real-valued, continuously differentiable interaction functions which satisfy:

∂σi(s−i)
∂ s j

=
∂σ j(s− j)

∂ si
, for all i, j ∈I and all s ∈ Ŝ (8)

where Ŝ is an open, convex subset of RI which contains S.

In a game with reciprocity, the marginal influence through the interaction func-
tions σi, i ∈I is symmetric between any two players. It may be zero (no interaction
effect), negative (which can been seen as a congestion effect or negative externality
when payoff functions are increasing in σi), and it may be positive (a spillover effect
or positive externality) depending on s ∈ S.

From (8) follows that each σi(s−i) must be affine in s j when s− j is kept fixed.
Hence without loss of generality:

σi(s−i) = αi +
I−1

∑
m=1

∑
j1<...< jm: jq 6=i

αi j1... jms j1 . . .s jm (9)

where all of the α’s are real constants. Since (8) is required to hold on open intervals,
it follows furthermore that α j0 j1... jm = α jr(0) jr(1)... jr(m) for any m > 0 and any permuta-
tion r : { j0, j1, . . . , jm}→{ j0, j1, . . . , jm}. It is now easily verified that such games are
generalized quasi-aggregative upon taking g(s) = ∑

I
m=2 ∑ j1<...< jm α j1... jms j1 . . .s jm ,

Fi(x−i,si) = (x−i−αi)si, and vi(s−i) = g(s)− (σi(s−i)−αi)si (as may be checked, vi
is independent of si as required by (4)). Fi clearly exhibits strictly increasing differ-
ences (assumption 2) since D2

six−i
Fi(x−i,si) = 1 > 0.

Games with reciprocal interactions were first studied by Dubey et al. (2006) and
subsequently generalized by Kukushkin (2005) to the form (9) (the name appears to
be due to Kukushkin).
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2.3.4 Games with Generalized Reciprocal Interactions, Networks

In one interpretation, games with reciprocal interactions describe symmetric (but po-
tentially very complex) networks. The simplest illustration of this interpretation is
when each player’s payoff function depends (linearly) on only a subset N(i) ⊆ I
of the other players’ strategies. So player i’s payoff function is a function of si and
σi(s−i) = ∑ j∈N(i) s j. Reciprocity/symmetry of the network, then amounts to having
j ∈ N(i)⇔ i ∈ N( j) (since then, and only then, will (8) hold for all i). Because this
paper’s results do not hinge on the specific functional forms, it is easy to generalize
the class so that more complex networks are allowed. Thus a game will still be gen-
eralized quasi-aggregative and satisfy assumption 2 if (8) is replaced by any one of
the following.

(8a) ∂σi(s−i)
∂ s j

/σi(s−i) = ∂σ j(s− j)
∂ si

/σ j(s− j)

(8b) ∂σi(s−i)
∂ s j

/si = ∂σ j(s− j)
∂ si

/s j

(8c) ∂σi(s−i)
∂ s j

/σi(s−i)
s j

= ∂σ j(s− j)
∂ si

/
σ j(s− j)

si

where in (8a) we must assume that every σi : S−i → R++, in (8b) that every si > 0,
and in (8c) we must assume both. Intuitively, (8a) expresses relative reciprocity, (8b)
proportional reciprocity, and (8c) reciprocity with respect to elasticities. Needless
to say, either one of these may be the more realistic one depending on the concrete
application. As mentioned, assumption 2 will also be satisfied.11

The “trick” used above to generalize a class of games by transforming one or
more of the involved functionals, should not be confused with transformations of the
strategies. Crucially, it may be that assumption 2 is satisfied before a transformation
but not after (and so this paper’s results do not apply). In this respect there is nothing
trivial about such transformation based results.

2.3.5 Aggregators with Weakly Separable Derivatives, the Variance and Other
Summary Statistics

Frequently one has a game where payoff functions take the form (3) for a known
aggregator g. In order for this paper’s results to apply, it must then be established that
the game is generalized quasi-aggregative (definition 2). In this case, the functions
σi, Fi, and vi, play a purely auxiliary role. When g is continuously differentiable and
Si ⊆R for all i, the game will be generalized quasi-aggregative provided that g’s first
derivatives are weakly separable w.r.t. each of the partitions {si,s−i}. Precisely, there

11 In the first case, transform the interaction functions, σ̃i(s−i) = logσi(s−i) to conclude that the game
is generalized aggregative with Fi(x−i,si) = log(x−i)si + vi(s−i) (which satisfies assumption 2 since
D2

x−isi
Fi(x−i,si) = 1

x−i
> 0). In the second case transform the strategies, Fi(x−i,si) = x−i log(si)+ vi(s−i),

and in the third transform both the interaction functions and the strategies, Fi(x−i,si) = log(x−i) log(si)+
vi(s−i). In either case Fi is smooth and satisfies assumption 2.
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must for each agent i ∈I exist functions fi and σi such that:12

∂g(s)
∂ si

= fi(σi(s−i),si) for all s ∈ S (10)

Directly verifying (10) is sometimes the easiest way to establish that a given game
is generalized quasi-aggregative. As an example, imagine that each payoff function
depends only on the player’s own strategy and the variance of all players’ strategies
(for an extension see section 5). That is to say, assume that (3) holds with,

g(s) = Var(s) = n−1(∑
i

s2
i )− (n−1(∑

i
si))2 (11)

Then ∂g(s)
∂ si

= 2n−1(1−n−1)si−2n−1(∑ j 6=i s j). So taking σi(s−i) = ∑ j 6=i s j, (10) is
satisfied with fi(x−i,si) = 2n−1(1−n−1)si−2n−1x−i. We conclude that such games
are generalized quasi-aggregative. In addition, Fi exhibits strictly decreasing differ-
ences since fi(x−i,si) is strictly decreasing in x−i. Hence Fi satisfies assumption 2
(with the affine transformation z 7→ h(z) = −z). As a second (admittedly somewhat
fancy) example assume that g(s) equals the sample mean of a log-normal distribu-
tion: E(s) = exp(µ + 0.5σ2) where µ is the average and σ2 is the variance of the
logarithm of the strategy vector. We would in this case have:

g(s) = exp[n−1(∑
i

log(si))+0.5n−1(∑
i
(log(si))2)− (n−1(∑

i
log(si)))2] (12)

As may be checked via (10), this is generalized quasi-aggregative with σi(s−i) =
∑ j 6=i log(s j) and Fi(si,x−i) = ns−1

i (log(si)s−1
i −2(log(si)+ x−i)).

3 Aggregative Games and Best-Reply Potentials

In this section is shown that if assumptions 1′ and 2 are satisfied, then a general-
ized quasi-aggregative game is a best-reply potential game as defined by Voorneveld
(2000). If assumption 1 is imposed rather than the (stronger) assumption 1′, the game
is a (best-reply) pseudo-potential game as defined in Dubey et al. (2006). The relevant
definitions are as follows:

Definition 3 (Best-Reply Potential Games) (R̃i,Si)i∈I is a best-reply potential game
if there exists a function P : S→R (the potential) such that for all i∈I and s−i ∈ S−i:

R̃i(s−i) = argmax
si∈Si

P(si,s−i) (13)

It is a best-reply pseudo-potential game if (13) is weakened to:

R̃i(s−i)⊇ argmax
si∈Si

P(si,s−i) (14)

12 To see this, integrate (10) to get g(s) =
∫ si
−∞ fi(σi(s−i),τ) dτ +vi(s−i) ≡ Fi(σi(s−i),si) + vi(s−i)

which is exactly (4).
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The previous definition of a best-reply potential game is identical to that found
in Voorneveld (2000). Dubey et al. (2006) as part of their definition of a pseudo-
potential game include the assumption that the potential must be a continuous func-
tion. The potential functions of the following theorem will in general only be upper
semi-continuous. As explained below, a continuous pseudo-potential function can,
however, be found if a continuous decreasing best-reply selection exists.

Theorem 1 (Quasi-Aggregative Games are Pseudo-potential Games) Let Γ be
a (generalized) quasi-aggregative game with compact strategy sets and upper semi-
continuous payoff functions. Then if assumptions 1′ and 2 are satisfied, the game is
a best-reply potential game. If assumptions 1 and 2 are satisfied, the game is a best-
reply pseudo-potential game. In either case, associated potential functions may be
found which are upper semi-continuous.

Proof: Section 6.1. �

Remark 31 Theorem 1 remains valid if instead of assumptions 1, it it assumed that
each Ri has an increasing selection. So, like Theorem 1 in Dubey et al. (2006), the
result applies equally to games of weak strategic substitutes or complements. More
generally, the result remains valid under any monotonic transformation of the in-
volved functions (see the discussion following assumption 2).

Theorem 1 parallels the main result in Dubey et al. (2006) who establish that an
aggregative game is a pseudo-potential game if (i) aggregation is linear, and (ii) the
game has a continuous best-reply selection which is either increasing or decreasing
(strategic substitutes or complements). As mentioned above, the potential function
determined by Dubey et al. (2006) is a continuous function under these assumptions.
If the best-reply selection is not continuous, Dubey et al. (2006)’s argument does not
apply, and the question answered in theorem 1 is left by the authors as an open ques-
tion (see Dubey et al. (2006), beginning of section 6). It should in this connection
be mentioned that if a continuous best-reply selection exists in the present setting, a
continuous potential function can be found too (see remark 61 in the proof). Thus
theorem 1 both generalizes and strengthens Dubey et al. (2006). The first part of the-
orem 1 (where assumption 1′ is invoked) is also closely related to the main result of
Kukushkin (2005) who proves the existence of a Cournot potential for a generalized
class of games with reciprocal interactions along the lines of that considered in sec-
tion 5 of Dubey et al. (2006) (see section 2.3.3 for the details). The existence of a
Cournot potential does not imply that the game is a best-reply potential game, how-
ever (it is a necessary but not a sufficient condition).

Whether or not strategy sets are convex, and whether or not payoff functions are
quasi-concave (none of which has been assumed anywhere), it is an immediate con-
sequence of theorem 1 that a pure strategy Nash equilibrium will exist.

Corollary 1 (Existence of PSNE) Let Γ be a (generalized) quasi-aggregative game
with compact strategy sets and upper semi-continuous payoff functions. Then if as-
sumptions 1 and 2 are satisfied, there exists a PSNE.
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Proof: By assumption 1, each Ri has a decreasing selection ri : X−i → Si. Replace
each Ri with the sectioning of the closure of the graph of ri.13 The resulting subcor-
respondence has a closed graph and satisfies assumption 1′. For the existence of a
PSNE it is sufficient to consider such a subcorrespondence: If R̂i : X−i → 2Si is a
subcorrespondence of Ri, R̂i(x−i)⊆ Ri(x−i) for all x−i ∈ X−i, then it is obviously true
that if s∗ ∈ R̂i(σi(s∗−i)) for all i, then s∗ ∈ Ri(σi(s∗−i)) for all i, and so it is a PSNE. By
theorem 1, P may be taken to be upper semi-continuous, hence it takes a maximum
on the compact set S. Any maximizer is trivially a PSNE. �

Corollary 1 contains as special cases the existence theorems of Dubey et al.
(2006),
Kukushkin (1994), Kukushkin (2005), and Novshek (1985). It is the first to answer
in the affirmative a question raised implicitly in Alos-Ferrer and Ania (2005), namely
whether a PSNE will exist under that paper’s notion of aggregation. Since this no-
tion of aggregation is so widely studied within evolutionary game theory (see e.g.
Schipper (2005) and references therein), our affirmative answer would seem to be of
some value. As explained in section 2, a quasi-aggregative game will be a game of
strategic complementarities if the interaction functions σi : S−i→ R are coordinate-
wise decreasing. In this case, existence of a PSNE follows from Tarski’s fixed point
theorem provided that S is a complete lattice (and as is well known, any aggregation
assumptions are superfluous from the point of view of existence of PSNE). If S is
not a complete lattice (which clearly is possible because we allow for multidimen-
sional strategy sets), the above corollary still applies even though Tarski’s fixed point
theorem does not.

A referee has asked me to address the general relationship between best-reply
potential games and quasi-aggregative games. For the following denote the set of
generalized quasi-aggregative games by Γ GQA, the set of quasi-aggregative games by
Γ QA, the set of potential games by Γ P, the set of best-reply potential games by Γ BP,
and the set of best-reply pseudo-potential games by Γ PBP. Clearly Γ QA ⊂ Γ GQA and
Γ P ⊂ Γ BP ⊂ Γ PBP, and by theorem 1, Γ QA∩Γ PBP 6= /0. The following two examples
show that if either assumption 1 or assumption 2 is violated, a quasi-aggregative game
may fail to have a PSNE. Since any game in Γ PBP has a PSNE, it follows in particular
that Γ QA 6⊆ Γ PBP (whence Γ GQA 6⊆ Γ PBP, Γ QA 6⊆ Γ BP, Γ GQA 6⊆ Γ BP, Γ QA 6⊆ Γ P, and
Γ GQA 6⊆ Γ P).

Example 5 Take I = 2, S1 = S2 = [0,1], and consider the (upper hemi-continuous)
best-reply correspondences, R̃2(s1) = {1−s1}, for s1 ∈ [0,1], and R̃1(s2) = {0.5−s2}
for s2 ∈ [0,0.5), R̃1(0.5) = {0,1}, and R̃1(s2) = {1.5− s2}, for s2 ∈ (0.5,1]. This
game is quasi-aggregative and satisfies assumption 2.14 It is easy to verify that a

13 The graph of ri is Graph(r̂i) = {(x−i,si) : si = r̂i(x−i)}. Since Ri has a closed graph, Cl(Graph(r̂i))⊆
Graph(Ri) = {(x−i,si) : si ∈ Ri(x−i)} (here Cl denotes the closure). Consequently, the sectioning of the
closure, R̂i(x−i) = {si ∈ Si : (si,x−i) ∈ Cl(Graph(r̂i))}, is a subcorrespondence of Ri.

14 Take σ1(s2) = s2, σ2(s1) = s1, g(s) = exp(s1 + s2), F1(s1,x−1) = exp(s1 + x−1), and F2(s2,x−2) =
exp(s2 + x−2). Needless to say, payoff functions that yield these best-reply correspondences may be pro-
duced so that (1) is satisfied.
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PSNE does not exist (depict the correspondences in a diagram with s1 on the first
axis and s2 on the second axis).

Example 615 Let S1 = S2 = S3 = [0,1] and consider the best-reply correspondences:

R̃1(s2,s3) =

{1} if s2 < 0.5
{0,1} if s2 = 0.5
{0} if s2 > 0.5

R̃2(s1,s3) =

{1} if s3 < 0.5
{0,1} if s3 = 0.5
{0} if s3 > 0.5

R̃3(s1,s2) =

{1} if s1 < 0.5
{0,1} if s1 = 0.5
{0} if s1 > 0.5

Taking σ1(s−1) = s2, σ2(s−2) = s3, and σ3(s−3) = s1, we can write R̃1(s−1) =
R1(σ(s−1)), R̃2(s−2) = R2(σ(s−2)), and R̃3(s−3) = R3(σ(s−3)). Assumption 1′ is
clearly satisfied (R1, R2, and R3 are strictly decreasing), and one easily constructs
“supporting” payoff functions in the form (1). (2) is satisfied with g(s) = Fi(si,x−i) =
0 for all i, say. No equilibrium exists: If s1 = 1 then s2 ≤ 0.5, so s2 = 0, but then s3 = 1
and so s1 = 0 (likewise if s1 = 0).

All best-reply potential games can be cast in the form (3) and are in this sense
“aggregative” unless further conditions are imposed. Indeed, if a best-reply potential
game has potential P : S→R, then (3) trivially holds for all i by taking π̂i(si,g(s)) =
g(s) and g := P. Not all (pseudo) best-reply potential games are generalized quasi-
aggregative, however. The following modification of example 1 establishes this fact
by showing that Γ P 6⊆ Γ GQA (whence Γ BP 6⊆ Γ GQA, Γ PBP 6⊆ Γ GQA, Γ BP 6⊆ Γ QA,
and Γ PBP 6⊆ Γ QA). Combining with the examples above, we are led to conclude that
best-reply potential games and (generalized) quasi-aggregative games are in general
distinct classes of games.

Example 7 Consider a three-player game with the payoff functions π̃1(s) = γ1s1−
1
2 s2

1s2− 1
3 s3

1s3−s1s2, π̃2(s) = γ2s2− 1
2 s2

1s2−s1s2−s2
2, π̃3(s) = γ3s3− 1

3 s3
1s3−s2

3 (here
Si ⊆ R, i = 1,2,3, and γ1,γ2,γ3 > 0). These payoff functions are strictly concave in
players’ own strategies and solutions will be interior if the γ’s are sufficiently large.
So there is nothing “perverse” about this example. Clearly, this is a potential game
with P(s) = γ1s1 +γ2s2 +γ3s3− 1

2 s2
1s2− 1

3 s3
1s3−s1s2−s2

2−s2
3. But it is not generalized

quasi-aggregative, since (1) cannot hold for any choice of functions πi, σi, i = 1,2,3.
The argument runs exactly as in example 1: If (1) were to hold for player i = 1, it
would follow that (∗) Ds1P(s) = Ds1πi(σ1(s−1),s1). (∗) implies that for all ŝ1 ∈ S1,
Ds1P(ŝ1, ·, ·) is constant on any of the sets ∆1(α,s1) = {(s2,s3) ∈ S2×S3 : Ds1P(s) =
α}= {(s2,s3) : γ1− s1s2− s2

1s3− s2 = α}, s1 ∈ S1 and α ∈ P(S). But this is false in
general.

15 This example is due to Nikolai Kukushkin (personal communication).
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4 Best-Reply Dynamics

We next turn to the dynamic properties of the equilibrium set. The dynamic concept to
be studied dates back to Cournot, who considered a duopoly where the firms sequen-
tially update their best-replies and proved convergence to a PSNE (Cournot (1838)).
Among the results of this section is the observation that, roughly, Cournot’s observa-
tions carry over to arbitrary generalized quasi-aggregative games under assumptions
similar to those of Cournot.

A sequence s = (s0,s1,s2, . . .) in S is a sequential improvement path if each player
moves in turn, to a strictly preferred strategy if one exist and if not, stays with the
previous strategy. Precisely, for all t there is an i such that st

−i = st+1
−i , and either (i)

st+1
i ∈ Ri(σi(st

i−1)), st
i /∈ Ri(σi(st

−i)), or else (ii) st+1
i = st

i ∈ Ri(σi(st
−i)). The path

is admissible if whenever I successive periods have passed all I different players
have moved (possibly to a previous strategy, st+1

i = st
i ∈ Ri(σi(st

i−1))). Admissibility
ensures that all of the players actually get to move. If this is not required, there is
nothing to be said in general about improvement paths’ dynamics.16

For (st) a sequence in S, say that (st) converges to the set A⊆ S if the limit point
of any convergent subsequence lies in A.17 An indifference path is a non-constant,
infinite path where players never move to a strictly preferred best-reply: {st+1

i ,st
i} ⊆

Ri(σi(st
−i)), st

−i = st+1
−i , all t.

Theorem 2 Consider a (generalized) quasi-aggregative game Γ with compact strat-
egy sets and upper semi-continuous payoff functions, satisfying assumptions 1′ and
2. Furthermore assume that Γ does not have any indifference paths. Then any ad-
missible sequential improvement path converges to a set of PSNEs. If the PSNE is
unique it is consequently Cournot stable: Every admissible sequential improvement
path converges to it.

Proof: Section 6.2. �

When best-replies are single-valued (e.g., payoff functions are strictly quasi-
concave), a player must either move to a strictly preferred best-reply or remain with
the previous strategy. This clearly rules out indifference paths. So the conclusion of
theorem 2 will apply to any (generalized) quasi-aggregative game with one-dimensional
compact strategy sets and upper semi-continuous strictly quasi-concave payoff func-
tions, satisfying assumptions 1 and 2.18

If assumption 1 is strengthened, we can say more. Assumption 1′ can be written
x̃−i > x−i ⇒ s̃i ≤ si for all s̃i ∈ Ri(x̃−i) and si ∈ Ri(x−i). The following strengthening

16 The trivial counter-example is when the same player moves at all dates. More generally, it must be
ruled out that the same subset of players moves at all dates. With for example three players, one could
imagine that only two of them moved at all dates, possibly changing to a strictly preferred strategy at all
dates. The process might converge, but only to a PSNE by coincidence because the third player never
moves.

17 Recall that the positive limit set of a sequence s is the set of convergent subsequences of s, Ω(s) =
{s ∈ S : s = limk→∞ sk, (sk) a subsequence of s} (see e.g. Agerwal (2000)). That s converges to a set A is
thus equivalent to saying that Ω(s)⊆ A.

18 This result can be found in Jensen (2007b).
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rules out any flat segments in the best-reply correspondences.

Assumption 1′′ Each of the correspondences Ri : X−i → 2Si satisfies x̃−i > x−i ⇒
s̃i < si for all s̃i ∈ Ri(x̃−i) and si ∈ Ri(x−i).

Remark 41 Amir (1996) establishes sufficient conditions for assumption 1′′ to be
satisfied (so called “strict comparative statics conditions”). What is needed is: (i)
That agent i’s best-replies are always in the interior of Si, (ii) That strategy sets are
locally convex, and (iii) That Dx−iπi(si,x−i) exists and is strictly decreasing in si (if
D2

x−isi
πi(si,x−i)� 0 this will be the case). See also Edlin and Shannon (1998) who

present an alternative (and weaker) set of conditions.

Say that a quasi-aggregative game is separable if the aggregator g is a separable
function. An indifference cycle of period k is an indifference path where each player
moves in a cycle, (s1

i ,s
2
i , . . . ,s

k
i ,s

1
i ,s

2
i , . . .) (if k = 1, the indifference path is thus triv-

ial). For the next result, recall that I denotes the number of players.

Proposition 1 Let Γ be a separable quasi-aggregative game with compact strategy
sets, upper semi-continuous payoff functions, satisfying assumptions 1′′ and 2. Then
any sequential improvement path is attracted to a set of indifference cycles of period
k ≤ I−1.

Proof: Under assumption 1′′, st
i,s

t+1
i ∈ Ri(σi), where σi ∈ R are constants. By defi-

nition of a sequential path, σi = σi(st
−i) for all i and t. Since g is separable, there is

no loss of generality in taking σi(s−i) = ∑ j 6=i s j in the following. Let s0 be the initial
point of an indifference path and assume without loss of generality that players move
in the sequence {1,2, . . . , I,1,2, . . .}. So at date t = 1 player 1 moves and at date
t = I the last player moves. Write sτ

i for the strategy which player i moves to within
the time interval t ∈ {τI +1, . . . ,τI + I}. With this notation, it must clearly hold that
σi + sτ

i = σi+1 + sτ−1
i+1 , i = 1, . . . , I− 1, and σI + sτ

I = σ1 + sτ
1. The conclusion of the

theorem now follows: To illustrate for player i = 1: σ1 +sτ
1 = σ2 +sτ−1

2 = σ3 +sτ−2
3 =

. . . = σ1 +sτ−(I−1)
1 . So if player 1 chooses s′1 at some point, she will return to s′1 again

after (at most) I−1 moves, and so forth. �

So under assumption 1′′, sequential improvement paths are attracted to cycles,
possibly trivial ones (i.e., infinite repetitions of a PSNE). Notice as an immediate
corollary that in a two-player game such as Cournot duopoly, the conclusion of the-
orem 2 must then hold (when I = 2, the indifference cycles must be of period k = 1,
i.e., they must be trivial).

5 Two Applications

This section briefly considers two concrete applications. In either case, the aggre-
gation concepts considered in Alos-Ferrer and Ania (2005), Dubey et al. (2006), or
Kukushkin (2005) do not apply. In particular, the observation that the games consid-
ered will be best-reply (pseudo) potential games could not have been reached without
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the notion of quasi-aggregative games. In the first example, strategy sets are multi-
dimensional. In the second example, strategy sets are one-dimensional but the aggre-
gator is neither separable, generalized symmetric, or linear in each player’s strategies.

5.1 A Teamwork Project with Multiple Tasks

I agents must each complete a sequence of Ti ∈ N tasks. If an agent is successful
in each part of the sequence, her individual project succeeds. If everyone is suc-
cessful in their individual projects, the agents’ common project succeeds. Otherwise
it fails. sn

i is the probability that agent i succeeds in task number n ∈ {1, . . . ,Ti}.
si = (s1

i , . . . ,s
Ti
i ) ⊆ Si = [0,1]Ti is agent i’s strategic variable. Intuitively, the agent

can choose the level of effort devoted to each of the Ti tasks (see Dubey et al.
(2006), Example 1 for a similar set-up). Payoff functions depend on own strategies
and the (expected) probability of joint success. So we have, π̃i(s) = πi(si,g(s)), all
i ∈ I , where g(s) = ∏ j∈I ∏n∈{1,...,Tj} sn

j (the probability that the common project
succeeds). The game is quasi-aggregative (take Fi(x−i,si) = (∏n∈{1,...,Ti} sn

i )x−i and
σi(s−i) = ∏ j 6=i ∏n∈{1,...,Tj} sn

j ). Assumption 2 will hold if boundary conditions are
placed on payoff functions so that no agent “deliberately fails his project” (i.e., chooses
some sn

i = 0).19 Assumption 1 (assumption 1′) will be satisfied if π̃i exhibits (strictly)
decreasing or (strictly) increasing differences in si and s−i (which is the usual defini-
tion of a game of strategic substitutes/complements).20 We conclude that such games
are pseudo-potential games, and best-reply potential games if assumption 1′ holds
(theorem 1).

5.2 Mean-Variance Utility

An interesting example of a generalized quasi-aggregative game arises when payoffs
depend on a linear combination of the mean and variance. Specifically, let π̃i(s) =
π̂i(si,g(s)), all i, where,

g(s) = αMean(s)+βVar(s) = αI−1
∑

i
si +β I−1(∑

i
s2

i )−β (I−1(∑
i

si))2 (15)

So we are in the setting of (3) and must find suitable functions σi, Fi, vi, i ∈ I
such that (4) holds. This will be the case with σi(s−i) = ∑ j 6=i s j, Fi(si,x−i) = αI−1si +
β I−1s2

i −β I−2(si +x−i)2, and vi(s−i) = αI−1
∑ j 6=i s j +β I−1(∑ j 6=i s2

j). Assume β 6= 0
(if β = 0, (15) reduces to a linear aggregator). Assumption 2 is satisfied because
D2

six−i
Fi = −2β I−2, which is strictly greater than zero if β < 0 (if β > 0, apply the

linear transformation Fi 7→−Fi). Because σi is linear, assumption 1 will hold provided

19 Simply observe that, D2
x−isi

Fi(x−i,si) = (∏n 6=1 sn
i , . . . ,∏n 6=Ti sn

i )� 0 for si ∈ (0,1]Ti .
20 This is sufficient, but not necessary even for πi to exhibit decreasing/increasing differences in si and

x−i.
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that this is a game of strategic substitutes (in the usual sense). Topkis’ condition for
this reads:

∂ 2πi(si,g(s))
∂ si∂ s j

= D12πi
∂g(s)

∂ si
+D22πi

∂g(s)
∂ si

∂g(s)
∂ s j

+D2πi
∂ 2g(s)
∂ si∂ s j

≤ 0 (16)

where ∂g(s)
∂ si

= αI−1 + 2I−1β [si−
∑ j s j

I ] and ∂ 2g(s)
∂ si∂ s j

= −2β I−2. If this is met (which
obviously requires additional structure on g and/or payoff functions), we conclude as
in the previous example.

6 Proofs

6.1 Proof of Theorem 1

Define two binary relations: The weak improvement relation, s̃ � s ⇔ ∃i ∈ I s.t.
[s̃−i = s−i, and s̃i ∈ Ri(σi(s−i))], and the improvement relation, s̃ � s ⇔ [s̃ � s and
si 6∈ Ri(σi(s−i))]. The following lemma shows how these improvement relations are
related to best-reply potential games.21

Lemma 1 The game (R̃i,Si)i∈I is a best-reply potential game if and only if there
exists a real-valued function, P : S→ R such that:

s̃� s⇒ P(s̃)≥ P(s) (17)

and
s̃� s⇒ P(s̃) > P(s) (18)

The game is a best-reply pseudo-potential game if and only if there exist subcorre-
spondences, R̂i : X−i→ 2Si , R̂i(x−i)⊆ Ri(x−i), all x−i, such that the game that arises
when every Ri is replaced with R̂i is a best-reply potential game.

Proof: The second claim concerning the pseudo-potential games case is a direct con-
sequence of the definitions and the first statement. So we only need to prove that
(R̃i,Si)i∈I is a best-reply potential game if and only if (17)-(18) hold. The “only if”
part is trivial: A best-reply potential must clearly satisfy these two conditions. As for
the converse, fix any s−i ∈ S−i, take s̃i ∈ argmaxsi∈Si P(si,s−i) and assume, by way of
contradiction, that s̃i 6∈ R̃i(s−i). But by (18), P(s̃i,s−i) < P(s) for any si ∈ R̃i(s−i). A
contradiction. Next take s̃i ∈ R̃(s−i) and assume that s̃i 6∈ argmaxsi∈Si P(si,s−i), i.e.,
P(si,s−i) > P(s̃i,s−i) for some si ∈ Si. (17)’s contraposition reads: P(s̃) < P(s)⇒
s̃ 6� s. Because s−i = s̃−i, the latter implies s̃i 6∈ R̃i(s−i). Another contradiction. We
conclude that argmaxsi∈Si P(si,s−i) = R̃i(s−i) for all s−i ∈ S−i. �

21 The result appears to be new. Kukushkin (2004) defines a generalized best-reply potential game as a
game which admits a function which satisfies (18). He also notes that this is a necessary condition for the
game to be a best-reply potential game and sufficient for the game to be a pseudo-potential game (the latter
can be seen by taking a single-valued selection in which case (17) becomes redundant).
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Let Ŝi denote the range of player i’s best-reply map, i.e., the set {si ∈ Si : si ∈
Ri(σi(s−i)) for some s−i ∈ S−i} ⊆ Si.22 That si ∈ Ŝi means that si is a best-reply to
some vector of opponents’ strategies. Ŝi is a compact set when S−i is compact and the
best-reply correspondence is upper hemi-continuous (remember that σi is continuous
by definition).

As a first step in our proof, we will verify (17)-(18) under the additional require-
ment that when s̃ � s (s̃ � s), si 6= s̃i ⇒ si ∈ Ŝi. Under this extra assumption, it is
possible to argue along the lines of Kukushkin (2005) (see also Dubey et al. (2006),
who adapt the potential function originally proposed in Huang (2002)). The potential
function (PR below) might be called a “restricted” best-reply potential (because it
only works when si is restricted as described).

When assumption 1′ holds, let ri, i ∈ I , denote the maximal selections from
the Ri’s (these maximal selections are decreasing under assumption 1′). If only the
(weaker) assumption 1 holds, let instead ri, i ∈ I , denote the maximal selections
from the sectioning of the closure of the graph of the decreasing selection R̂i : X−i→
2Si (see footnote 13 for the details). Notice that the correspondence R̂i is a subcorre-
spondence of Ri (cf. lemma 1).

Let⊥i = mins−i∈S−i σi(s−i),>i = maxs−i∈S−i σi(s−i), and extend each ri to [⊥i,>i]
along the lines of Kukushkin (2005) (beginning of the proof of proposition 4.1). Un-
der assumption 2, each function Fi will be absolutely continuous in the restricted
sense (see Gordon (1994)) in x−i, and in particular D1Fi will exist almost everywhere.
Taking D1Fi = 0 when it does not exist, the following restricted best-reply potential
function is well-defined where the integral is the Henstock-Kurzweil integral (again
see Gordon (1994) and also Jensen (2007a)).23

PR(si,s−i) = ∑
i
[
∫ >i

⊥i

min{D1Fi(τ,si),D1Fi(τ,ri(τ))} dτ +Fi(⊥i,si)]−g(si,s−i)

(19)
Note that by assumption 2, D1Fi(τ,si)≤D1Fi(τ,ri(τ)) if si ≤ ri(τ), and D1Fi(τ,si)≥
D1Fi(τ,ri(τ)) if si ≥ ri(τ). Take s, s̃ ∈ S with s̃� s, si ∈ Ŝi. If si = s̃i it is obvious that
PR(s) = PR(s̃) so we are done. Let x̃−i = σi(s−i), hence s̃i ∈ Ri(x̃−i). Since si ∈ Ŝi,
there exists x−i ∈ X−i such that si ∈ Ri(x−i). The fundamental theorem of calculus for
the Henstock-Kurzweil integral (see again e.g. Gordon (1994) and Jensen (2007a))
applies, which allows us to conclude as follows:

PR(s̃i,s−i)−PR(si,s−i) = Fi(x̃−i,si)−Fi(x̃−i, s̃i)+∫ x−i

x̃−i

D1Fi(τ,ri(τ)) dτ +
∫ x̃−i

⊥i

D1Fi(τ, s̃i) dτ−
∫ x−i

⊥i

D1Fi(τ,si) dτ +Fi(⊥i, s̃i)−Fi(⊥i,si)=

∫ x̃−i

⊥i

D1Fi(τ,si) dτ +
∫ x−i

x̃−i

D1Fi(τ,ri(τ)) dτ +
∫ x̃−i

⊥i

D1Fi(τ, s̃i) dτ−

22 Clearly the range of Ri coincides with the range of the actual best-reply map R̃i.
23 If Fi is C1 we may use instead the Riemann integral. If it is absolutely continuous, the Lebesgue inte-

gral can be used. So the reader who is uncomfortable with the Henstock-Kurzweil integral can substitute
the Riemann or Lebesgue integrals in the following.
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∫ x−i

⊥i

D1Fi(τ,si) dτ−
∫ x̃−i

⊥i

D1Fi(τ, s̃i) dτ =

∫ x−i

x̃−i

[D1Fi(τ,ri(τ))−D1Fi(τ,si)] dτ (20)

It is clear that if x−i = x̃−i (which happens if si, s̃i ∈ Ri(σi(s−i)), i.e., if (17) holds
but not (18)), then this term equals zero. If not, i.e., if si 6∈ Ri(σi(s−i)), there are two
cases: If x̃−i > x−i then si ≥ ri(τ) for all τ with strict inequality for all τ in an open
neighborhood of x̃−i. Since then D1Fi(τ,ri(τ)) ≤ D1Fi(τ,si) for a.e. τ ∈ [x−i, x̃−i],
it is clear that (20) is greater than or equal to 0. Assume to arrive at a contradiction
that (20)= 0. This will be the case if and only if D1Fi(τ,ri(τ)) = D1Fi(τ,si) for a.e.
τ ∈ [x−i, x̃−i]. There exists a decreasing function t : [x−i, x̃−i]→ R+ with t(x̃−i) = 0
and t(x−i) = si− s̃−i > 0 such that D1Fi(τ,ri(τ))−D1Fi(τ,si)≥D1Fi(τ, s̃i + t(τ))−
D1Fi(τ,si) for all τ . It follows that there is some α > 0 and some ε > 0 such that
for all τ ∈ [x−i,x−i + ε]: D1Fi(τ,ri(τ))−D1Fi(τ,si) ≥ D1Fi(τ, s̃i + α)−D1Fi(τ,si).
Integrate to get 0≥ Fi(x−i +ε, s̃i +α)−Fi(x−i +ε,si)− [Fi(x−i, s̃i +α)−Fi(x−i,si)].
This contradicts assumption 2, so (20)> 0.

If x̃−i < x−i then si ≤ ri(τ) for all τ with strict inequality for all τ in an open
neighborhood of x−i. The proof is similar in this case and is omitted.

We conclude that when (s̃i,s−i),(si,s−i)∈ S and si ∈ Ŝi, (s̃i,s−i)� (�)(si,s−i)⇒
PR(s̃i,s−i)−PR(si,s−i)≥ (>)0. So the conditions of lemma 1 have been verified for
the “restricted” case.

Remark 61 There is one case when the potential PR applies directly (and in partic-
ular, the potential will then be a continuous function since so is PR). This is when the
selection ri of assumption 1 is continuous. Such a selection will map onto an interval
which allows one to extend the domain of the reduced best-reply selections and take
Ŝi = Si for all i above (see Dubey et al. (2006), p.82, l.6-8 for details. This clearly
works whether the aggregator is linear or not).

Next we define a potential function which applies to the general case. Since PR is
a continuous function, ν = maxs∈S PR(s)−mins∈S PR(s)+1 is a well-defined quantity
(strictly greater than 1). Now define:

P(s) = PR(s)+∑
i

χi(si) (21)

where χi(si) = ν if si ∈ Ŝi and χi(si) = 0 if si 6∈ Ŝi. It is easy to see that P will satisfy
(17) and (18) for all s̃,s ∈ S. So P is a best-reply potential. Furthermore, P is upper
semi-continuous because it is the sum of a continuous function PR and an upper semi-
continuous function ∑i χi(si). That ∑i χi(si) is upper semi-continuity can be verified
directly from the definition: The sets {s ∈ S : ∑i χi(si)≥ α} will be a finite union of
sets of the type ŜA×S−A, A ⊆ {1, . . . , I} all of which are closed (since so are Ŝi and
Si for all i). But then {s ∈ S : ∑i χi(si)≥ α} will be closed for any α ∈ R.
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6.2 Proof of Theorem 2

The following is an adaption of a standard argument from Liapunov methods (see
e.g., Agerwal (2000)).

Lemma 2 Let s be any sequential improvement path (including weak ones and indif-
ference paths). Then Ω(s)⊆ L(p)≡ {s ∈ S : P(s) = p}, some p < +∞.

Proof: Let (stl ) be a convergent subsequence of S with limit point sω . (P(st))∞
t=0

is a non-decreasing sequence by (17), hence so is (P(stl ))∞
l=0 and it follows that

liml→∞ P(stl ) = limt→∞ P(st) = p. It is a direct consequence of the continuity of PR

that P(stl )→ P(s) for any convergent subsequence stl → s of a sequential improve-
ment path (st)∞

t=0. In particular, P(sω) = p where by compactness, p < +∞. �

We are now ready to prove the theorem. Let s = (st)∞
t=0 be an admissible se-

quential improvement path and (stl ) a convergent subsequence with limit s. Clearly
stl+1 ∈ (Ri(tl)(σi(tl)(s

tl
−i(tl)

)),{stl
−i(tl)
}) for all l. Since the sequence is infinite and

the number of players is finite, we may pick a subsequence (stlm )m∈N such that
i(tlm) = 1, say, for all m. It follows that stlm +1 ∈ (R1(σ1(s

tlm
−1)),{s

tlm
−1}) for all m. Since

the best-reply correspondences are upper hemi-continuous, it is true that stlm +1 →
s̃1 ∈ (R1(σ1(s−1)),{s−1}) as m → ∞ (for any subsequence such that the limit is
well-defined. Such a subsequence is chosen and indexed here again by lm). Note
that {s, s̃} ⊆ Ω(s), so by lemma 2, P(s) = P(s̃). But then, because of (17)-(18), it
must be the case that s1, s̃1 ∈ R1(σ1(s−1)). At every date tl1m

, player 1 moves by con-
struction; and passing to yet another subsequence if necessary, we can therefore find
another player, say i = 2, who moves at all tl1m

+ 1 (admissibility). Now we repeat

the previous argument, beginning with the observation that (stllm
+1)→ s̃1 is itself a

convergent subsequence of s (in particular, s̃1 ∈Ω(s)). This yields a limit s̃2 with the
property that s2, s̃2

2 ∈ R2(σ2(s̃1
−2)). Again s̃2 ∈ Ω(s) (being the limit of a convergent

subsequence). This argument can be continued indefinitely, yielding an admissible
indifference path (s̃t)∞

t=1 fully contained in L(p). Under the assumptions of the the-
orem, any indifference path is trivial (the infinite repetition of a PSNE). This leaves
only one possibility, namely that s0 is a PSNE.
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